首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
根据ABS制动试验台的测量记录的制动管路压力变化数据,对Jetta-GTX轿车制动管路的压力增减变化特性进行了建模,通过对模型曲线和试验曲线的对比表明,利用最小二乘曲线拟合法直接识别得到模型的参数,从而可以较好地拟合ABS系统制动轮缸的压力变化。  相似文献   

2.
基于VABCO压力调节器气制动ABS系统,综合考虑温度、管路长度等彩响因素建立了制动气室压力变化数学模型;通过压力阶跃响应试验,频率特性试验和PWM调压试验分析了制动压力动态特性,证明了所建立的数学模型基本合理。为ABS控制逻辑的开发提供了理论依据。  相似文献   

3.
汽车防抱死系统(ABS)依靠制动液压力波传递制动压力,对汽车制动效能影响很大。文中利用压力传感器采集ABS制动液压力,对采集的数据进行希尔伯特-黄变换(HHT)去噪,再利用互相关原理对不同刹车盘转速和制动管路长度下的制动液压力波波速进行计算。研究表明,制动液压力波波速可达1 181.8 m/s。  相似文献   

4.
汽车防抱制动系统中液压系统性能评价与试验   总被引:7,自引:0,他引:7  
建立包含电磁阀、制动管路和制动分泵的防抱制动系统(Anti-lock braking system,ABS)液压系统数学模型,设计ABS液压系统试验平台,对实车ABS液压系统进行测试。采用回归分析的方法对模型参数进行拟合,对仿真结果与试验数据进行对比验证。在液压系统模型的基础上,建立整个ABS系统的仿真模型,进行仿真分析,讨论影响ABS控制效果的液压系统滞后时间、升压减压能力、压力波动特征等关键因素及参数。研究结果为ABS系统与整车制动系统的匹配提供了重要依据。  相似文献   

5.
工程车辆全液压制动系统管路较长,管内制动压力传递特性是影响车辆制动性能的重要因素。紧急制动时管路压力存在高频变化,此时对制动压力传递特性的研究应采用分布式管路参数模型。通过建立包含14个变量组成的制动管路仿真模型,可计算获得特定制动管路压力的传递频域特性,辨识后可得到制动管路压力传递函数表达式。通过对管径、油液界质、油液温度在紧急制动条件下制动压力阶跃响应特性的分析,揭示了管径和油液运动粘度对管路压力传递特性影响规律,为全液压工程车辆制动系统的设计及现有系统的改良提供了依据。  相似文献   

6.
ABS防抱死制动系统是一种汽车安全保护措施,我国目前ABS系统研究主要针对主缸压力不变和电磁阀脉宽不变的情况下进行,该文对变化的主缸压力进行了实验,对普通制动、长加长减制动及阶梯制动分别进行了实验研究,并通过压力梯度试验数据对影响ABS控制效果的关键因素进行了分析。  相似文献   

7.
本文对某汽车ABS制动系统进行仿真建模,并对其进行单轮模型和分段线性的轮胎模型的建立;在Matlab环境下对ABS控制器进行设计和仿真分析;提出了一种门限值控制算法,对制动液压控制系统实现增压、保压、减压动作,使得汽车制动时的滑移率控制在一定范围内,以保证汽车的平稳制动。得出ABS控制下的滑移率时域结果图、车轮前进速度与车轮线速度关系曲线、制动器制动力矩与地面制动力随时间变化曲线。仿真结果表明:在门限值控制算法下设计的ABS控制器能够将滑移率有效地控制在理想范围内,车轮前进速度近似一条直线,加速度趋于定值,且防止了车轮过早抱死,说明在此基础上设计的控制器能够使得汽车平稳制动。  相似文献   

8.
本文阐述了在Simulink的环境下以ABS(防抱死制动系统)滑移率为对象进行控制,根据ABS系统工作原理建立了ABS单一车轮的仿真模型.并得出仿真曲线,验证汽车ABS具有良好的制动性能。  相似文献   

9.
本文阐述了在Simulink的环境下以ABS(防抱死制动系统)滑移率为对象进行控制,根据ABS系统工作原理建立了ABS单一车轮的仿真模型,并得出仿真曲线,验证汽车ABS具有良好的制动性能。  相似文献   

10.
对基于JETTA GTX轿车ABS液压系统改造的ABS/ASR集成液压系统的动态特性进行研究,通过搭建的试验台和开发的检测采集系统对前后制动系统在各种工况下的增压、减压和保压过程进行测试,得到了不同条件下前后制动系统的压力变化特性,对建立集成液压系统的理论模型和进行实车ABS和ABS/ASR控制系统的开发具有指导作用。  相似文献   

11.
为了提高汽车气压ABS制动系统的安全性和可靠性,从气压ABS调节器的基本结构和工作特性入手,采用AMESim平台建立气压ABS调节器模型并对其调节特性进行分析,具体围绕共性能参数、制动气室压力变化的静态特性与动态特性进行研究。  相似文献   

12.
1.制动不良或失灵(1)制动管(如接头处)渗漏或阻塞,制动液不足,制动油压下降而失灵。应定期检查制动管路、排除渗漏,添加制动液、疏通管路。(2)制动管内进入空气使制动迟缓。制动管路受热、管内残余压力  相似文献   

13.
随着电动汽车产业的发展,电动汽车保有量迅速增加,电动汽车的行驶安全变得越来越重要。以电动汽车制动系统为研究对象,分析了传统制动系统和装有防抱死制动系统(ABS)车辆制动时参数的变化规律,建立了制动系统的数学模型,利用Simulink对传统制动系统进行了仿真,同时对釆用PID控制策略的防抱死制动系统进行了仿真分析。通过仿真得到了制动时车速、轮速、滑移率、制动距离随时间的变化曲线,通过对比发现装有ABS的制动系统在紧急制动时可以有效縮短制动距离,提高汽车制动过程中的操纵稳定性。  相似文献   

14.
首先介绍了反比例压力阀控制的汽车ABS系统,建立了盘式制动器数学模型,利用液压系统动态仿真软件DSHW建立了具有细长制动管道的汽车ABS系统模型,同时建立汽车ABS实验系统。探讨了细长管道对制动压力响应,结果表明:细长制动管道对制动压力响应存在滞后影响,管道越长,滞后时间越长;在负阶跃响应时比较明显,在正阶跃时滞后比较小。  相似文献   

15.
气压防抱死调压阀为制动系统压力控制的关键阀件,其调压特性会影响气压制动回路的延迟特性。现基于调压阀电磁-机械耦合特性,解析阀芯、膜片运动方程,并构建了调压阀AMESim仿真模型。以此分析调压阀的静、动态特性,获取了结构参数、控制信号等对压力调节特性的影响机理;通过数据拟合,定量分析了调压响应特性参数影响规律。仿真结果表明,管路直径对增压响应时间影响程度大于降压响应时间;膜片直径对降压时间影响程度较大;脉冲信号占宽比对动态压力调节特性影响较大。通过分析各参数对不同性能的影响可知,利用此模型可高效分析ABS调压阀调节特性;全面获取了调压阀性能参数,可为ABS控制策略优化提供数据支持;定量分析的数据结果可为优化气压制动系统响应时间提供依据。  相似文献   

16.
1.双管路制动系统的特点工程车辆上的双管路制动系统,就是设置2个互相独立的制动管路,分别控制各组车轮制动器,从而完成全部车轮制动动作的制动系统。工程车辆前、后桥制动相互独立,当制动系统压力低于343kPa时,整机不能起步行驶;当一个制动管路失效后,另一制动管路仍能正常制动;当制动系统发生故障时,车辆可实现自行制动,同时将动力切断直至停车。该制动系统驻车坡度大、操纵轻便、驻车安全可靠。  相似文献   

17.
车辆制动系统是汽车安全行驶的重要保障。常规制动系统开发主要针对制动器、制动液压缸、驻车机构等部件的设计计算,往往忽略连接各个液压元件的制动管路尺寸对车辆制动性能的影响。经过研究与实践发现,制动管路的尺寸直接影响制动响应时间与释放时间。其中,制动响应时间过长会增加车辆在紧急工况下的动作时间,是车辆制动系统的主要缺陷之一,而制动释放时间直接影响车辆的驱动效率。为了量化制动管路尺寸对车辆制动性能的影响,文章以HCU性能测试台架为测试平台,首先在AMESim环境下对制动系统建模,模拟不同尺寸的制动管路在相同制动系统和制动信号下的管路压力响应,筛选最优制动管路尺寸区间。最后在HCU性能试验台架上更换三个仿真结果相近的制动管路验证仿真结果,并选出尺寸最优的制动管路,优化台架的制动性能。文章介绍的方法对消除制动系统缺陷与车辆制动系统设计过程中制动管路选型都具有重要意义。  相似文献   

18.
一、制动不良或失灵的原因及解决办法 1.制动管(如接头处)渗漏或阻塞,制动液不足,制动油压下降而失灵.应定期检查制动管路,排除渗漏,添加制动液,疏通管路. 2.制动管内进入空气使制动迟缓.制动管路受热、管内残余压力太小,以致制动液气化,使管路出现气泡,由于气体可压缩,从而在制动时导致制动力下降.维护时将制动分泵及管内空气排尽并按规定添加制动液.  相似文献   

19.
杨磊  杨静  陈西江 《机械设计与制造》2023,(10):210-216+222
针对无人机防滑制动系统(ABS),提出了一种反推模糊滑模控制方法。在机电作动器模型的基础上,建立无人机制动系统纵向动力学模型。为了克服制动系统的高阶非线性,采用Barrier Lyapunov函数设计了ABS控制器,确保无人机在制动过程中的滑移率能够在预设范围内跟踪参考值。然后,通过功率快速终端滑模控制算法实现ABS控制器所需的高性能制动压力控制,在此基础上建立模糊校正器以提高机电执行器(EMA)在不同制动压力范围内的动态自适应能力。实验结果表明,所提出的制动压力控制策略能够提高EMA的伺服性能,实验结果表明,所提出的控制策略在各种跑道条件下都具有良好的稳定性。  相似文献   

20.
防抱死制动系统(Anti-lock braking system,简称ABS)通过改变制动系统压力以防止车辆紧急制动时的抱死拖滑,它是改善汽车主动安全性的重要装置。本文主要使用Matlab中的Simulink模块分别对基于逻辑门限值控制策略和模糊控制策略的ABS进行了建模仿真,从滑移率和制动距离入手讨论了不同控制策略对车辆制动性能的影响,以及不同路面下ABS性能的差异。对不同车型的ABS的结构选型、性能分析具有重要意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号