首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 139 毫秒
1.
Geometric error component identification is needed to realize the geometric error compensation which can significantly enhance the accuracy of multi-axis machine tools. Laser tracker has been applied to geometric error identification of machine tools increasingly due to its high capability in 3D metrology. A general method, based on point measurement using a laser tracker is developed for identifying the geometric error components of multi-axis machine tools in this study. By using this method, all the component errors and location errors of each axis (including the linear axis and rotary axis) of the multi-axis machine tools can be measured. Three pre-described targets are fixed on the stage of the under-test axis which moves step by step. The coordinates of the three targets at every step are determined by a laser tracker based on the sequential multilateration method. The volumetric errors of these three target points at each step can be obtained by comparing the measured values of the target points’ coordinates with the ideal values. Then, nine equations can be established by inversely applying the geometric error model of the axis under test, which can explicitly describe the relationship between the geometric error components and volumetric error components, and then the component errors of this axis can be obtained by solving these equations. The location errors of the axis under test can be determined through the curve fitting. In brief, all the geometric error components of a single axis of multi-axis machine tools can be measured by the proposed method. The validity of the proposed method is verified through a series of experiments, and the experimental results indicate that the proposed method is capable of identifying all the geometric error components of multi-axis machine tools of arbitrary configuration.  相似文献   

2.
At present, the detection of rotary axis is a difficult problem in the errors measurement of NC machine tool. In the paper, a method with laser tracker on the basis of multi-station and time-sharing measurement principle is proposed, and this method can rapidly and accurately detect the rotary axis. Taking the turntable measurement for example, the motion of turntable is measured by laser tracker at different base stations. The redundant equations can be established based on the large amount of measured data concerning the distance or distance variation between measuring point and base station. The coordinates of each measuring point during turntable rotation can be accurately determined by solving the equations with least square method. Then according to the error model of rotary axis, the motion error equations of each measuring point can be established, and each error of turntable can be identified. The algorithm of multi-station and time-sharing measurement is derived, and the error separation algorithm is also deduced and proved feasible by simulations. Results of experiment show that a laser tracker completes the accuracy detection of the turntable of gear grinding machine within 3 h, and each error of the turntable are identified. The simulations and experiments have verified the feasibility and accuracy of this method, and the method can satisfy the rapid and accurate detecting requirements for rotary axis of multi-axis NC machine tool.  相似文献   

3.
Spindle thermal drift measurement using the laser ball bar   总被引:1,自引:0,他引:1  
Thermally induced errors are major contributors to the overall accuracy of machine tools. An important component of thermally induced errors is the error associated with spindle thermal drifts. In this paper, a novel method is developed to measure spindle thermal drifts in machine tools using a laser ball bar (LBB) as the calibration instrument. The method is implemented on a two-axis CNC turning center. The LBB is used to measure the coordinates of the spindle center and the direction cosines of the spindle axis at various thermal states. The axial, radial, and tilt thermal drifts of the spindle are then computed from the changes in these coordinates. The new method is verified by comparing the spindle drifts measured with the LBB to those measured by capacitance gauges. The results obtained by the new method show good agreement with the capacitance gauge technique. The primary advantage of the new method is the ability to measure the spatial coordinates of the spindle center and direction cosines of the spindle axis with the same instrument used for measurement of the geometric errors of the machine axes.  相似文献   

4.
This paper presents a method to identify the position independent geometric errors of rotary axis and tool setting simultaneously using on-machine measurement. Reducing geometric errors of an ultra-precision five-axis machine tool is a key to improve machining accuracy. Five-axis machines are more complicated and less rigid than three axis machine tools, which leads to inevitable geometric errors of the rotary axis. Position deviation in the process of installing a tool on the rotary axis magnifies the machining error. Moreover, an ultra-precision machine tool, which is capable of machining part within sub-micrometer accuracy, is relatively more sensitive to the errors than a conventional machine tool. To improve machining performance, the error components must be identified and compensated. While previous approaches have only measured and identified the geometric errors on the rotary axis without considering errors induced in tool setting, this study identifies the geometric errors of the rotary axis and tool setting. The error components are calculated from a geometric error model. The model presents the error components in a function of tool position and angle of the rotary axis. An approach using on-machine measurement is proposed to measure the tool position in the range of 10 s nm. Simulation is conducted to check the sensitivity of the method to noise. The model is validated through experiments. Uncertainty analysis is also presented to validate the confidence of the error identification.  相似文献   

5.
A machining test of cone frustum, described in NAS (National Aerospace Standard) 979, is widely accepted by machine tool builders to evaluate the machining performance of five-axis machine tools. This paper discusses the influence of various error motions of rotary axes on a five-axis machine tool on the machining geometric accuracy of cone frustum machined by this test. Position-independent geometric errors, or location errors, associated with rotary axes, such as the squareness error of a rotary axis and a linear axis, can be seen as the most fundamental errors in five-axis kinematics. More complex errors, such as the deformation caused by the gravity, the pure radial error motion of a rotary axis, the angular positioning error of a rotary axis, can be modeled as position-dependent geometric errors of a rotary axis. This paper first describes a kinematic model of a five-axis machine tool under position-independent and position-dependent geometric errors associated with rotary axes. The influence of each error on machining geometric accuracy of a cone frustum is simulated by using this model. From these simulations, we show that some critical errors associated with a rotary axis impose no or negligibly small effect on the machining error. An experimental case study is presented to demonstrate the application of R-test to measure the enlargement of a periodic radial error motion of C-axis with B-axis rotation, which is shown by present numerical simulations to be among potentially critical error factors for cone frustum machining test.  相似文献   

6.
Synthesis modeling of a geometric error-based traditional method for large-scale grinding machine tools with six axes is too complicated to perform in a real-time compensator with a built-in position control system, and it is difficult to obtain all of the error elements corresponding to the model. This paper proposed a novel strategy in which a machine may be considered as translation axes and rotary axes, and geometric errors of the translation axes and rotary axis are modeled and the geometric error models of the machine are very simple for real-time error compensation. The volumetric errors of the translation axes are measured using spatial circular curve ball bar test, and every element of the rotary axis is also obtained by a series of considerate ball bar tests. According to the characteristics of a position controller used in the machine, a synthesis error compensation system based on the NUM numerical control system was developed. Error compensation experiments were carried out, and the results show that the accuracy of the machine is improved significantly.  相似文献   

7.
考虑飞秒激光跟踪仪仪器轴系的几何误差会影响仪器的指向精度并最终影响坐标测量精度,本文研究了激光光轴与竖轴的几何误差对仪器测量精度的影响。提出了激光光轴与竖轴的同轴度标定方法,以降低其不重合带来的跟踪测量误差。首先,基于几何光学原理建立了光轴与竖轴的几何误差模型,分别分析了光轴与竖轴的倾斜与平移误差对仪器测角精度的影响。然后,针对设计的仪器提出了基于旋转成像原理的光轴与竖轴同轴度的检测方法,并设计了一套同轴度检测装置。最后,基于该检测装置,通过调节两组双光楔完成了激光光轴与竖轴的倾斜与平移误差的标定。结果显示,经标定校准后激光光轴与竖轴的角度误差为3.4″;平移误差为26.1μm,得到的结果为仪器后续建立误差补偿模型奠定了基础。  相似文献   

8.
As the geometric errors of motion axis can be equivalent to the differential movement, regarded as a differential operator based on its ideal position, a new modeling method for multi-axis CNC machines based on differential transform theory is proposed in this paper. First, the workpiece coordinates is selected to observe the errors of the tool pose. Then, a general geometric error model for multi-axis machines is established. Moreover, the Jacobian matrix is applied to describe the relationship between the tool pose error vector and the compensation error vector. All the elements of the matrix are obtained by computing the differential operators instead of computing the partial derivatives. The compensation errors vector is solved using the pseudo-inverse Jacobian matrix. Finally, an automatic modeling procedure is developed to construct the geometric errors for multi-axis machine tools. An experiment on a five-axis machine tool is conducted to test and verify the proposed method. The results show that the proposed method dramatically improves the overall position accuracy of the test tool path.  相似文献   

9.
为降低转动轴几何误差对转台-摆头式五轴机床精度的影响,提出了基于球杆仪的位置无关几何误差测量和辨识方法。基于多体系统理论及齐次坐标变换方法建立了转台-摆头式五轴机床位置无关几何误差模型,依据旋转轴不同运动状态下的几何误差影响因素建立基于圆轨迹的四种测量模式,并实现10项位置无关几何误差的辨识。利用所建立的几何误差模型进行数值模拟,确定转动轴的10项位置无关几何误差对测量轨迹的影响。最后,采用误差补偿的形式实验验证所提出的测量及辨识方法的有效性,将位置无关几何误差补偿前后的测量轨迹进行比较。误差补偿后10项位置无关几何误差的平均补偿率为70.4%,最大补偿率达到88.4%,实验结果表明所提出的建模和辨识方法可用于转台-摆头式五轴机床转动轴精度检测,同时可为机床精度评价及几何精度提升提供依据。  相似文献   

10.
A double ball bar (DBB) is extensively used to evaluate the geometric and dynamic performance of three-axis machine tools by means of the XY, YZ and XZ planar circular tests. Errors can be estimated by comparing them with known error profiles. However, such geometric interpretation of error plots of five-axis machine tools is limited. In this paper, a five-axis machine tool model is established with Homogeneous Transformation Matrices (HTMs), laying the foundation for characterising particular geometric shapes induced by various Position Independent Geometric Errors (PIGEs) of all five axes. A testing scheme is proposed to evaluate the target five-axis machine tool in two major steps: testing the rotary axes individually and testing the linear-rotary axes couples. In the first step, each rotary axis is tested with two substeps, with and without the extension bar on the DBB. The second step requires each linear and rotary axes combination to move simultaneously. Both approaches are performed with only one setup, thus simplifying the setup procedure and reduce the machine down time. To show the validity of the method, PIGEs for each axis are simulated with the given machine tool model. Several DBB trajectories are simulated using the machine tool model. Compared with the actual testing plots, the simulated DBB error plots are helpful to diagnose the PIGEs of linear and rotary axes based on their particular geometric shapes. The results suggest that the proposed method along with the given error characteristics can be used as a fast indication of a five-axis machine tool’s performance.  相似文献   

11.
This work will report the development and application of an auto-alignment laser interferometer system for the geometric error calibration of CNC multi-axis machines. The system is capable of a diagonal displacement measurement, where multiple machine axes are moved simultaneously, with automatic optic alignment. This capability provides a solution for quick evaluation of the overall volumetric error of a multi-axis machine tool. One application of the system is that the 21 geometric errors of a 3-axis machine can be quickly estimated from the displacement measurements of some determined diagonal lines in the working volume. Compared with a time of several days using a conventional laser interferometer system, it takes only 1 hour for the proposed system to complete the geometry calibration of a 3-axis machine. A method for the roll calibration of a vertical axis is also proposed and demonstrated in this work.  相似文献   

12.
为了降低数控机床几何误差,提升加工精度,提出机械制造业数控机床几何误差自动控制方法。通过激光跟踪仪辨识机械制造业数控机床的几何误差,采用快速定位补偿算法与圆弧插补补偿算法相结合的方法补偿数控机床几何误差。利用计算机辅助制造软件生成刀位文件,依据刀位文件生成数控机床加工程序,通过补偿控制器生成数控机床各轴运动的控制指令,数控机床伺服系统接收控制指令后,自动控制数控机床各轴运动,以达到数控机床几何误差自动控制的目的。实验结果表明,采用该方法自动控制数控机床几何误差后,方向与角度的几何误差分别低于0.03 mm与0.1°,实际应用效果较好。  相似文献   

13.
Rotary tables are widely used with multi-axis machine tools as a means for providing rotational motions for the cutting tools on the three-axis machine tools used for five-axis machining operations. In this paper, we present a comprehensive procedure for the calibration of the rotary table including: geometric error model; error compensation method for the CNC controller; error measurement method; and verification of the error model and compensation algorithm with experimental apparatus. The methods developed were verified by various experiments, showing the validity and effectiveness of the presented methods, indicating they can be used for multi-axis machine tools as a means of calibration and precision enhancement of the rotary table.  相似文献   

14.
Since a five-axis machine tool has two more rotary axes and two more degrees of freedom than a three-axis machine tool, it can manufacture a complex surface more efficiently. However, there are more error terms due to the extra axes. Error sources for machine tools include structural error, dynamic error, and static error. The static error, which includes thermal and geometric errors, is the main source of machining inaccuracy in machine tools. Although a large number of studies have been made on geometric errors, the influence of individual error term on volumetric error is seldom discussed. This paper analyzes assembly error that belongs to the category of static error, and the analytic method can be applied to general orthogonal configurations. By adopting the machine tool form-shaping function, the effect of assembly errors on volumetric errors has been investigated. And the error terms that cannot be compensated by driving single control axis have been recognized and explored for general orthogonal configurations.  相似文献   

15.
This paper proposes a product of exponential (POE) model to integrate the geometric errors of multi-axis machine tools. Firstly, three twists are established to represent the six basic error components of each axis in an original way according to the geometric definition of the errors and twists. The three twists represent the basic errors in x, y, and z directions, respectively. One error POE model is established to integrate the three twists. This error POE formula is homogeneous and can express the geometric meaning of the basic errors, which is precise enough to improve the accuracy of the geometric error model. Secondly, squareness errors are taken into account using POE method to make the POE model of geometric errors more systematic. Two methods are proposed to obtain the POE models of squareness errors according to their geometric properties: The first method bases on the geometric definition of errors to obtain the twists directly; the other method uses the adjoint matrix through coordinate system transformation. Moreover, the topological structure of the machine tools is introduced into the POE method to make the POE model more reasonable and accurate. It can organize the obtained 14 twists and eight POE models of the three-axis machine tools. According to the order of these POE models multiplications, the integrated POE model of geometric errors is established. Finally, the experiments have been conducted on an MV-5A three-axis vertical machining center to verify the model. The results show that the integrated POE model is effective and precise enough. The error field of machine tool is obtained according to the error model, which is significant for the error prediction and compensation.  相似文献   

16.
Virtual machine tools have been used widely for simulating designs in computer environments to determine optimal design parameters without the need for manufacturing prototypes. Machine tools include different multiple configurations that are designed to be suitable for the differing requirements of production. To date, studies on dynamic analysis have been limited to a few-axis machine tools of a specific configuration, such as a 3-axis milling machine or a 4-axis grinding machine. Here, we propose a novel method to focus on the dynamic analyses of multi-axis machines with differing multiple configurations. The motion equations for multiple degrees of freedom of linear and rotary axes are established by a Lagrange energy method, equilibrium equations, and Newton’s second law. This technique formulates the motion equations for each axis, and then further develops them for a multi-axis machine through a combination process and a transformation matrix. The library includes five dynamic model components, built to simulate 1236 different configurations of a machine tool. A dynamic analysis was applied to a control system to simulate the control signals of a virtual machine, which include stepped, ramped, curved, sinusoidal, and circular responses, and frequency response functions. The simulated and experimental results demonstrated that the method has high accuracy and reliability for one-, two-, and four-axis machine tools. Thus, this method can simulate the dynamic analyses of multi-axis machines and different multi-configurations without the need to build a specific configuration for each machine. It is recommended for selecting optimal motors, design parameters, and control parameters of the multiple configurations in a machine tool.  相似文献   

17.
Ballbar testing of rotary axes in 5-axis machine tools can be time-consuming and requires high levels of operator expertise; especially in the set-up process. Faster tests reduce down-time and encourage frequent updates to compensation parameters to reflect the current state of the machine. A virtual machine tool (VMT) is developed to emulate the machine tool, its geometric errors and the testing procedures. This was used to develop a new single set-up testing method to identify all rotary axis locations errors, whilst remaining robust in the presence of set-up error and linear axis squareness errors. New testing and data processing techniques remove the requirement for fine-adjustment of the tool-cup and permit full automation of necessary toolpaths, including transitions. Using the VMT, error identification residuals were found to be 2.7 % or less. Experiments and statistical analysis then showed that all errors can be measured using a single set-up, and values are sufficiently close to the values measured using conventional multi-set-up procedures to be used in error compensation. This method will significantly reduce set-up durations and removes the need for any modified testing hardware.  相似文献   

18.
A measuring method using a double ball bar (DBB) is proposed for identifying the eight position-independent geometric errors (PIGE) on the rotary axes of five-axis machine tools. Three measuring patterns are used, in which the translational axes are kept stationary and only two rotary axes move to obtain a circular trajectory. In this way, the effects of translational axes are totally excluded, and the measurement accuracy is improved. Motion equations, describing how the A-axis and C-axis move simultaneously to realize a circular trajectory, are presented. The influence of each deviation on the measurement patterns is simulated, and analytical solutions for the eight PIGEs are demonstrated. Finally, the measuring method is verified in a five-axis CNC machine tool. Experimental results confirm that the method provides precision results for the eight PIGEs.  相似文献   

19.
实时误差补偿技术是近代机床技术的研究重点,多轴数控机床的误差补偿问题有很高的难度和研究价值。本文提出了基于多体系统的五轴数控机床几何误差建模技术,研究了误差补偿的关键,即表示几何误差的参数,同时为了评估建模的好坏,研究了基于多体系统的切削工件过程仿真。  相似文献   

20.
数控机床几何精度综合解析与试验研究   总被引:4,自引:0,他引:4  
以对机床精度影响较大的几何误差为对象,通过理论与试验相结合,对其进行较深入的研究。基于多体系统理论,综合考虑各轴定位误差、直线度误差以及角度误差等几何误差元的耦合作用,提出一种机床综合误差建模方法,并在机床坐标系下建立三轴数控机床综合误差模型。通过利用激光干涉仪的大量试验得出定位误差、直线度误差以及角度误差曲线,分析证实定位误差相对于直线度误差和角度误差影响更为显著。以此为基础,进一步研究工作空间综合误差在各轴各误差元耦合作用下的分布和演变规律,发现综合误差在某轴向的分量与该轴的定位误差非常接近,给出定位误差是影响综合误差的决定性因素的结论。机床几何精度的分析对于机床精度补偿方法的选取与运用具有理论和实际意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号