首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 685 毫秒
1.
采用共沉淀法分别制备Al_2O_3和TiO_2前驱体包覆MgO颗粒,并在1 450℃保温2h得到MgO基陶瓷,研究了Al_2O_3和TiO_2添加量对陶瓷物相组成、烧结性能和抗热震性能的影响.结果表明:添加Al_2O_3后,陶瓷的主要物相为方镁石相和MgAl_2O_4相,随Al_2O_3添加量的增加,MgAl_2O_4相含量增多,线收缩率和热震次数均先增后降,体积密度则增大;添加TiO_2后,陶瓷的主要物相为方镁石相、Mg_2TiO_4相和MgTiO_3相,随TiO_2添加量的增加,Mg_2TiO_4和MgTiO_3相含量增多,线收缩率和体积密度均先增后降,热震次数则先增加后保持稳定;当Al_2O_3和TiO_2的质量分数分别为6%,4%时,陶瓷的烧结性能和抗热震性能均最佳.  相似文献   

2.
采用球磨法制备Na_2O质量分数分别为12.31%,9.31%,7.31%的Na_2O-SiO_2-Al_2O_3-B_2O_3系陶瓷结合剂,研究了Na_2O含量对烧结前后陶瓷结合剂的物相组成、力学性能、热膨胀系数,以及对陶瓷结合金刚石砂轮抗弯强度的影响。结果表明:较高的Na_2O含量有利于抑制石英相的析出;随着Na_2O含量的增加,烧结后陶瓷结合剂的硬度和抗弯强度降低,热膨胀系数在较低温度(620~640℃)烧结后增大,在较高温度(660~680℃)烧结后先增后降;当Na_2O的质量分数为9.31%、烧结温度为680℃时,所得陶瓷结合金刚石砂轮的抗弯强度最大,为53.5 MPa;3种陶瓷结合剂制备得到的金刚石砂轮具有相似的微观结构。  相似文献   

3.
以CaO和TiO2为原料,外加质量分数分别为0,1%,2%,3%,4%的Y_2O_3后,分别在1 300,1 400℃保温3h烧结制备CaTiO_3陶瓷,研究Y_2O_3掺杂量和烧结温度对陶瓷物相组成、晶体结构、烧结性能和微观结构的影响.结果表明:随着Y_2O_3掺杂量的增加,CaTiO_3的晶胞体积先增大后减小,Y~(3+)置换Ti~(4+)使CaTiO_3晶胞体积增大,置换Ca~(2+)则使晶胞体积减小;随Y_2O_3掺杂量的增加或烧结温度的升高,陶瓷的烧结线收缩率和体积密度均增大;随Y_2O_3掺杂量的增大,陶瓷的显微结构更为致密,CaTiO_3晶粒尺寸先增大后减小,晶粒形状由不规则台阶状转变为规则形状.  相似文献   

4.
分别采用尿素辅助共沉淀法和溶胶凝胶法制备Eu~(3+)掺杂Lu_2SiO_5(Lu_2SiO_5∶Eu~(3+))粉体,对比分析了煅烧温度对粉体物相组成和微观形貌的影响以及Eu~(3+)掺杂量对粉体发光性能的影响.结果表明:两种方法均可制得纯度较高的Lu_2SiO_5粉体,但溶胶凝胶法可以得到单相纯Lu_2SiO_5粉体,而尿素辅助共沉淀法所得粉体中含有少量Lu2O3杂质相;溶胶凝胶法所得粉体的粒径为200~300nm,且粉体颗粒的表面比尿素辅助共沉淀法制得的粗糙;当Eu~(3+)掺杂量(物质的量分数)为5%时,两种方法所得Lu_2SiO_5∶Eu~(3+)粉体的发光强度均达到最大,且溶胶凝胶法所得Lu_2SiO_5∶Eu~(3+)粉体的发光强度更高.  相似文献   

5.
以纳米MgO粉和ZrO_2纤维为原料,以短切碳纤维为添加剂,采用无压烧结工艺制备碳纤维增强MgO-ZrO_2陶瓷,研究了碳纤维添加量对陶瓷烧结性能、物相组成、抗热震性能和显微结构的影响.结果表明:随碳纤维添加量的增加,陶瓷的相对密度和线收缩率降低,显气孔率增大,碳纤维的添加不利于MgO-ZrO_2陶瓷的烧结;抗弯强度随碳纤维添加量的增加先增大后减小,当碳纤维的体积分数为20%时,陶瓷的抗弯强度最大,为287.15 MPa;碳纤维的添加能提高MgO-ZrO_2陶瓷的抗热震性能,当碳纤维体积分数为15%时,陶瓷的抗热震性能最佳.  相似文献   

6.
通过直接添加与原位生成两种方式引入Y_2O_3作为烧结助剂,热压烧结制备了AlN陶瓷;研究了添加方式及添加量对AlN陶瓷显微结构和力学性能的影响。结果表明:原位生成烧结助剂的方式更有利于AlN陶瓷的致密化,特别是当原位生成的Y_2O_3质量分数为2%时,AlN陶瓷的相对密度达到99.0%,硬度为15.39GPa,抗弯强度为383.0MPa,均高于直接添加Y_2O_3的;同时可获得晶形完整、第二相含量少且大部分位于三叉晶界、晶粒间面-面接触的显微结构;随着原位生成烧结助剂添加量的增多,陶瓷的相对密度下降,在AlN晶界处出现大量第二相而导致陶瓷的硬度、抗弯强度等力学性能也下降。  相似文献   

7.
以Y2O3为烧结助剂,采用放电等离子烧结技术制备了以MoSi2为第二相的α-Sialon陶瓷,研究了MoSi2添加量(0~10%,质量分数)对陶瓷微观结构和性能的影响。结果表明:添加MoSi2后,陶瓷中α-Sialon晶粒从等轴状变为长棒状,且随着MoSi2添加量的增多,长棒状α-Sialon晶粒显著增多,长径比增大,当MoSi2质量分数为10%时,晶粒尺寸呈现显著的双峰分布;当MoSi2质量分数从0增加到10%时,陶瓷的相对密度由99.0%增加到99.7%,硬度由21.12 GPa降低到20.44 GPa,断裂韧度由4.80 MPa·m1/2增加到6.13 MPa·m1/2;在干切削镍基高温合金时,添加质量分数10%MoSi2的陶瓷刀具在达到磨损标准时的切削长度是未添加MoSi2陶瓷刀具的1.5倍,可见该刀具切削性能优异,其...  相似文献   

8.
采用真空液相烧结技术制备了Mo_2FeB_2基金属陶瓷,研究了钒添加量(质量分数,0~7.5%)对其组织和力学性能的影响。结果表明:当钒添加量不大于2.5%时,金属陶瓷的孔隙率无明显变化,当钒添加量大于2.5%时,金属陶瓷中的孔隙明显增多,金属陶瓷的致密性下降;钒的添加对金属陶瓷的相组成无显著影响,Mo_2FeB_2硬质相均匀分布在铁基黏结相中;当钒添加量为2.5%时,硬质相呈长条状且明显细化;当钒添加量大于2.5%时,硬质相发生团聚,且形貌由长条状向等轴状转变;随着钒添加量的增加,金属陶瓷的硬度、抗弯强度和断裂韧度均先增后降,当钒添加量为2.5%时均达到最大值,分别为90.6HRA、2 350MPa和15.1MPa·m~(1/2)。  相似文献   

9.
以共沉淀法制备的莫来石溶胶为结合剂,在不同温度(1 100,1 300,1 500℃)烧结制备了刚玉质浇注料,研究了莫来石溶胶添加量对刚玉质浇注料物相组成、烧结性能、常温耐压强度和微观结构的影响。结果表明:随莫来石溶胶添加量的增加,试样的体积密度先增后降,显气孔率先降后增;试样的物相均主要为刚玉相和莫来石相,随着烧结温度的升高和莫来石溶胶添加量的增加,莫来石相的含量增加,试样的常温耐压强度增大;当莫来石溶胶的质量分数为3%时,1 500℃烧结试样的常温耐压强度最大。  相似文献   

10.
以三聚氰胺为原料、FeCl_2·6H_2O为催化剂前驱体,应用催化热解法制备竹节状氮掺杂碳纳米管,研究了反应温度和FeCl_2·6H_2O添加量对产物物相组成和显微结构的影响.结果表明:当反应温度为650~800℃时,碳纳米管的生成量及长径比均随反应温度的升高先增后降,其最佳反应温度为750℃;在750℃热解时,随着FeCl_2·6H_2O添加量的增加,碳纳米管的生成量和长径比均先增后减,最佳添加量为三聚氰胺质量的0.50%,在此条件下合成的碳纳米管直径为40~50nm,长度为10~15μm,碳纳米管中氮掺杂量(原子分数)为3.42%,其中石墨型氮的物质的量分数为43.1%.  相似文献   

11.
利用激光熔覆技术在TC4钛合金表面制备了添加质量分数1.0%,1.5%,2.0%CeO2的TiB2-TiC/Ni复合涂层,研究了复合涂层的物相组成、显微组织和硬度,讨论了搭接率(30%,40%,50%)对最佳CeO2含量条件下复合涂层试样摩擦磨损性能的影响。结果表明:复合涂层均由TiB2、TiB、α-Ti、TiC、Ni3Ti、Cr23C6、Ti2Ni、Cr3C2、γ-Ni等相组成;添加质量分数1.5%CeO2复合涂层的组织最为均匀致密,细化效果明显;随着CeO2添加量的增加,复合涂层的硬度先增后降,添加质量分数1.5%CeO2复合涂层的硬度最高,约为1 015 HV。CeO2的最佳添加质量分数为1.5%,在此条件下随着搭接率的增加,试样的磨损质量损失先减小后增大,当搭接率为40%时,...  相似文献   

12.
以工业硅藻土细粉为原料,以硅酸钠为烧结助剂,采用发泡注凝法在1 000℃保温2h制备多孔硅藻土陶瓷,研究了硅酸钠添加量(0~5%,质量分数)对陶瓷物相组成、显微结构、气孔孔径和耐压强度的影响.结果表明:随硅酸钠添加量的增加,多孔硅藻土陶瓷中的方石英含量减少,鳞石英含量增加,烧结致密程度增大,气孔孔径呈现减小的趋势,耐压强度增大;当硅酸钠的质量分数为3%时制备得到具有多级孔结构的硅藻土陶瓷,该陶瓷的耐压强度为(1.13±0.08)MPa,比未添加硅酸钠的提高了约113%,其200℃时的热导率仅为(0.098±0.002)W·m~(-1)·K~(-1).  相似文献   

13.
在碳化硅粉中添加质量分数为1%~5%的石墨烯,采用无压烧结工艺在2 190℃保温1h制备石墨烯/碳化硅陶瓷复合材料,研究了石墨烯添加量对复合材料物相组成、密度和力学性能的影响。结果表明:该复合材料由碳化硅相及少量石墨相组成;随着石墨烯添加量的增加,复合材料的密度下降,相对密度变化较小,抗弯强度和断裂韧度先增大后减小,硬度下降;当石墨烯的质量分数为3%时,复合材料的抗弯强度为395 MPa、硬度为89HRA、断裂韧度为6.0 MPa·m1/2,综合力学性能最好。  相似文献   

14.
以Si3N4粉体为原料,添加30wt%的Zr O2和8wt%的Y2O3为烧结助剂,研究Zr O2粒径(50 nm、0.15 um和0.6 um)对热压烧结Si3N4力学性能的影响。实验结果表明,随着Zr O2粒径的减小,硬度逐渐降低,但断裂韧性逐渐增加。当粒径从0.6 um降低到50nm时,陶瓷的断裂韧性能从5.86 MPa·m1/2提升到6.92 MPa·m1/2。  相似文献   

15.
采用传统固相烧结法制备0.96K_(0.5)Na_(0.5)NbO_3-0.04Bi_(0.5)Na_(0.5)ZrO_3+xMnCO_3(简称为0.96KNN-0.04BNZ+xMn,x=0,0.1%,0.3%,0.5%,0.7%,质量分数)无铅压电陶瓷,研究了锰掺杂量对该无铅压电陶瓷晶相结构、显微结构、压电和介电性能的影响。结果表明:0.96KNN-0.04BNZ+xMn陶瓷具有纯钙钛矿结构,随着x的增加,陶瓷相从正交-四方两相共存转变为正交相,体积密度、压电常数、机电耦合系数和介电常数先增后降,机械品质因数增大,而介电损耗角正切、剩余极化强度、矫顽场和居里温度降低;当x为0.3%时,陶瓷的综合性能最佳。  相似文献   

16.
采用传统熔体冷却法制备添加不同质量分数(0~3.0%)Bi_2O_3的SiO_2-Al_2O_3-MgO系玻璃,研究Bi_2O_3添加量对玻璃热稳定性、结构稳定性以及物理与力学性能的影响。结果表明:添加Bi_2O_3可有效降低玻璃的软化点;随着Bi_2O_3添加量的增加,玻璃析晶温度与玻璃化转变温度之差先增大后减小,光学带隙先减小后增大,说明玻璃的热稳定性和结构稳定性先提高后降低,同时玻璃的密度、弯曲强度、压缩强度和压缩模量也呈先增大后降低的趋势;当Bi2O3的质量分数为1.5%时,玻璃的结构稳定性、热稳定性、物理与力学性能最优异,此时玻璃析晶温度与玻璃化转变温度之差为244K,光学带隙为3.50eV,密度为2.67g·cm~(-3),弯曲强度为82.72 MPa,压缩强度为236.24MPa,压缩模量为110.06GPa。  相似文献   

17.
采用超重力下燃烧合成技术,以快速凝固方式制备了Al2O3/ZrO2(4Y)复合陶瓷,用XRD、SEM与EDS等研究了ZrO2含量对复合陶瓷显微结构和性能的影响。结果表明:当复合陶瓷中ZrO2质量分数在34.1%~46.4%时,复合陶瓷的显微结构主要为棒晶;当质量分数为49.6%~53.7%时,其显微结构主要为形状不规则的ZrO2球晶;随着ZrO2含量的增加,复合陶瓷的相对密度逐渐降低(最高可达94.3%),而硬度和断裂韧度均呈先增高后降低的趋势,当ZrO2质量分数为42.6%时,硬度和断裂韧度均达到最高值,分别为13.1 GPa和13.5 MPa.m1/2。  相似文献   

18.
采用传统熔体冷却法制备了Li_2O掺杂量(质量分数)为0~3.0%的SiO_2-Al_2O_3-MgO玻璃,探讨了Li_2O掺杂量对玻璃热稳定性、结构稳定性以及力学性能的影响。结果表明:掺杂Li_2O能有效降低玻璃的软化温度;随着Li_2O掺杂量的增加,玻璃的光学带隙先减小后增大,结构稳定性、热稳定性、力学性能先增强后减弱,当Li_2O掺杂量为1.0%时,玻璃的结构最稳定、弯曲和压缩性能最优。  相似文献   

19.
黄兆权  黄瑶  姜知水 《机电信息》2023,(8):48-51+55
采用MgO-Y2O3作为烧结助剂,利用光固化成形技术、结合气压烧结方法制备了高致密化程度和高性能的Si3N4陶瓷。研究了Mg O-Y2O3烧结助剂总掺量对光固化成形Si3N4陶瓷的相对密度、物相组成、显微结构、热学和力学性能的影响。研究结果表明,随着Mg O-Y2O3烧结助剂总掺量的增加,光固化成形Si3N4陶瓷的相对密度和平均晶粒尺寸逐渐增大,总掺量为10wt%时,达到最大值,分别为99.01%和0.82μm;而热导率和抗弯强度均呈先增大后降低的变化趋势,并在8wt%达到最大值,分别为59.58 W·m-1·K-1和915.54 MPa。  相似文献   

20.
在WC-10Co4Cr金属陶瓷粉中添加不同质量分数(0,6.5%,10.0%,20.0%)NiCrAlY合金粉,采用超音速火焰喷涂技术在316L不锈钢基体表面制备NiCrAlY/WC-10Co4Cr金属陶瓷涂层,研究了合金粉添加量对涂层显微组织、显微硬度和耐腐蚀性能的影响。结果表明:不同合金粉添加量下所得涂层的显微组织均主要由WC相组成;随着合金粉添加量的增加,涂层中的镍和Ni3Al相含量增多,孔隙率和硬度下降,耐腐蚀性能先增后降;当合金粉质量分数为6.5%时,涂层的硬度分布最均匀,耐腐蚀性能最好。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号