首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
高平坦度的三级双泵浦结构C+L波段超荧光光源   总被引:3,自引:0,他引:3  
为了使掺铒光纤超荧光光源C波段与L波段光谱匹配良好,实现高平坦度的C+L波段宽带光源,提出了一种三级双泵浦光源结构。首先,使用三段不同型号、不同长度的掺铒光纤,两个980nm激光二极管,波分复用器,隔离器以及3dB耦合器构成的光纤环形镜搭建宽带光源实验装置;然后,通过不断优化三段掺铒光纤的长度,调节两级抽运源功率获得高平坦度C+L波段光源输出;最后对其产生机理进行分析。实验结果表明,当三段掺铒光纤的长度分别为11.5m、53m和6.5m,两级抽运源功率分别为65mW和115mW时,输出光谱的3dB带宽为75.68nm,在1543~1603nm波段光谱的平坦度±1.3dB(不加任何滤波器的条件下)。获得的高平坦度C+L波段宽带光源可以更好地满足光纤传感、光纤通信系统等领域的应用要求。  相似文献   

2.
基于光纤环形镜的C+L波段高平坦高功率掺铒光源   总被引:3,自引:2,他引:1  
研究并设计了一种用3 dB宽带耦合器制作的光纤环形镜作为反射镜的双级双程单管抽运高平坦度高功率C+L波段ASE光源。用2个980 nm激光二极管调试两级抽运光功率的分配,两级采用掺铒浓度不同的光纤并优化光纤长度,获得了功率高达15.28 mW(11.84 dB/m)的C+L波段ASE光输出,平均波长为1 559.31 nm,在未采用任何外加滤波器的情况下,其平坦区域3 dB带宽66.72 nm(从1 533.12 nm至1 599.84 nm)。之后采用一个激光二极管实现两级双向同时抽运得到了同样的效果。通过光纤环形镜的使用,不仅提高了抽运源利用效率,且改善了光源的平坦度,在实验过程中,在平坦度相度相对要差一些的条件下,还通过调整两级抽运光的功率及分配比例得到了功率达到30.11 mW的C+L 波段ASE输出。  相似文献   

3.
袁悦  周剑  姜润知 《光学仪器》2015,37(1):14-18
为优化双程后向结构的掺铒光源,分析了光纤长度、泵浦功率和温度的变化对光源平均中心波长的影响,初步确定了掺铒光纤长度的优化范围,并在全温度范围内进行实验验证。实验选用的980nm泵浦源电流为110mA,掺铒光纤的长度为12.5m,该装置的输出功率为13.26mW,光源的平均波长稳定性为0.6℃-1。通过建立光谱分布优化仿真模型,实现输出光谱的近高斯分布,3dB带宽达到32nm。经过优化后得到的掺铒光纤光源具有输出功率高、平均波长稳定性好、输出光谱呈高斯分布等优势,是高精度光纤陀螺的理想光源。  相似文献   

4.
李丽  贾振安 《光学仪器》2017,39(3):61-67
为满足光纤布拉格光栅传感和波分复用光纤通信系统对光源光谱平坦度与带宽的要求,利用外部增益平坦技术实现掺铒光纤超荧光光源输出光谱的平坦化。介绍了三种常见的外部增益平坦技术,并通过实验对平坦结果进行比较,由此得出采用长周期光栅增益平坦滤波器是一较好的选择。实验结果表明,平坦波段范围内(1 525~1 540nm)的光谱不平坦度小于±1.1dB,整个C波段光谱的3dB带宽为39.125nm。  相似文献   

5.
为了实现平坦度更好、光谱覆盖可见光波段的超连续谱激光输出,研究了泵浦波长可调谐的全光纤结构超连续谱光纤激光器。设计搭建了一台非线性偏振旋转锁模脉冲光纤激光器,实现了9种中心波长的耗散孤子皮秒脉冲输出,波长调谐范围为1 041~1 076nm;以它作为种子源进行了两级功率放大,并泵浦10m长的光子晶体光纤,在泵浦激光功率为500mW时,得到9种输出光谱特性不同的超连续谱激光,得到当泵浦激光中心波长为1 050nm时,更利于实现光谱范围更宽、平坦度更好、可见光分量更多的超连续谱激光输出。为进一步拓宽超连续谱激光的光谱范围、提升光谱平坦度,将泵浦激光功率提升至1.45 W,最终实现了输出功率为600mW、短波边界为470nm、600~1 700nm内10dB光谱宽度为1 053nm的超连续谱激光输出。  相似文献   

6.
将采用机械感生法写制的长周期光纤光栅(MLPFG)串入环形腔中,设计了一种新颖的L波段可调谐环形掺铒光纤激光器(EDFL)。抽运光源为980nm半导体激光器,使用掺铒浓度为5×10-4,长度为12m的铒纤作为增益介质,通过调整待写制光纤与周期性压力槽之间的夹角,改变MLPFG的写制周期,调谐MLPFG透射谱,进而影响环形腔增益最高点,光纤激光器波长可调谐范围可达42nm(1562.465~1604.280nm),激光光谱3dB带宽0.04nm,20dB带宽0.08nm,边模抑制比45dB。长时间观测表明,激光功率稳定性优于0.2dBm。实验显示,该光纤激光器具有带宽较宽,线宽较窄及性能稳定等特点。  相似文献   

7.
采用端面泵浦的方式,用尾纤输出波长为976 nm的高亮度多模半导体激光器, 包层泵浦的铒镱共掺双包层大模面积光纤,非球面镜组耦合系统,进行了共掺双包层光纤的高功率L-band光纤激光器的研究,泵浦耦合效率达到了62%以上,并在F-P激光振荡腔中实现了高效的连续激光输出。在光纤长度为30 m、入纤功率为 13.41 W时,首次报道输出连续功率达到了4.3 W。激光器的斜率效率为44%, 激光输出中心波长1 603 nm。  相似文献   

8.
为了用简单、紧凑的谐振腔获得稳定的激光输出,大的调谐范围和转换效率,设计了信号光单共振V型光学参量振荡(OPO)腔,采用内腔式抽运周期极化掺镁铌酸锂晶体(PPMgLN)的光学参量振荡技术获得了连续中红外宽波段调谐激光的输出.用808 nm半导体激光抽运Nd:YVO4晶体产生的1 064 nm激光作为光参量振荡的基频光,通过V型腔灵活控制激光光斑并改变PPMgLN的极化周期和控制温度实现了2 249~3 706 nm中红外的连续宽波段调谐激光输出.在半导体激光抽运功率为10.5W,极化周期为29.98μm,控制温度为411 K的情况下获得了最高650 mW的中红外激光输出,对应的中心波长为3 466 nm,线宽为2.6 nm,具有较好的单色性.在7.5W的入射功率下,最高808 nm抽运光到闲频光的转化效率达7.73%,对应输出功率为580 mW.  相似文献   

9.
根据现有生成超连续谱方案的不足,搭建了一台全光纤结构的纳秒声光调Q激光器。该激光器中心波长为1 064.3nm,重复频率为20kHz,脉冲宽度为250ns;经过一级放大得到的输出功率为13.02 W。将信号光耦合进自行研制的高功率模场适配器(MFA),得到了10.7 W的信号光输出,耦合效率高达82.2%。将MFA与光子晶体光纤(PCF)熔接,得到了平均功率为5.43 W的超连续谱输出,光谱覆盖为900~1 700nm。由于实验采用的声光调制器(AOM)脉宽较宽,导致泵浦光峰值较低,非线性效应较弱,未能使超连续谱向可见光展宽。因此,建议采用较窄脉宽的AOM作为调Q元件来实现高峰值功率输出,以改善纳秒脉冲PCF产生的超连续谱特性。  相似文献   

10.
介绍了采用980nm和1480波长泵源双向泵浦结构,研制输出光功率大于22dBm、噪声系数低于5dB的光纤有线电视网络掺铒光纤放大器的基本原理、优化方案和实验结果。  相似文献   

11.
本文回顾了高功率全光纤侧面抽运耦合器的研究进展,重点介绍了拉锥-熔合法制作的侧面抽运耦合器的基本原理、研究现状、面临挑战及解决方案。该方案可实现千瓦量级高抽运耦合效率高信号光通过率抽运/信号耦合器的制备,是高功率全光纤侧面抽运耦合器的主流方案。结合已报道的理论和实验结果,总结了该方案在制作工艺、损耗机理、性能提升等方面面临的挑战,提出了将侧面抽运耦合器引入级联抽运光纤激光器的方案,并将一种(2+1)×1侧面抽运耦合器成功应用于2.5kW输出的级联抽运掺镱光纤激光器中。结果表明,相比LD抽运,在级联抽运中,高亮度光纤激光作为抽运光源使耦合器在保证高抽运耦合效率的同时具有更高的功率承载能力。  相似文献   

12.
设计、制作了一款980nm高稳定度激光泵浦源控制系统,以满足掺铒光纤放大器(EDFA)稳定工作的需要。首先,以恒流激励原理设计了控制系统的驱动单元。接着,使用半导体制冷器(TEC)作为泵浦源的温度控制手段,设计了控制系统的温度控制单元。为了验证控制系统的有效性,选用一款激光泵浦模块组成了完整的激光泵浦源系统。最后,对激光泵浦源的激光输出进行了实验,研究了光功率与驱动电流的关系,以及系统的光功率稳定度与光谱稳定性等。对系统进行了相关测试实验,结果显示:应用了本控制系统的激光泵浦源的激光输出中心波长为975.2nm,光功率可达600mW,短期光功率稳定度为±0.008dB,长期光功率稳定度为±0.05dB,比同类激光泵浦源具有更高的稳定度。得到的结果表明:所设计的激光泵浦源控制系统满足设计要求,具有一定的实用价值。  相似文献   

13.
基于FBG的波长可调谐环形掺铒光纤激光器   总被引:2,自引:1,他引:2  
在介绍光纤光栅波长调谐原理的基础上,设计了一种环形腔掺铒光纤激光器。利用光纤光栅(FBG)作为波长调谐元件,在20~170 ℃的温度范围内,实现了输出激光波长在1 547.7~1 556.5 nm内的连续可调,调谐线性度达99.96%,激光光谱的3 dB带宽均小于0.05 nm,20 dB带宽均小于0.08 nm,边模抑制比大于52 dB,输出功率可达21.2 mW。结果表明:可调谐掺铒光纤激光器具有可用带宽较宽、功率高、线宽窄、与光纤元件天然兼容等优点。  相似文献   

14.
双包层Yb/Er共掺光纤放大器的数值模拟   总被引:2,自引:0,他引:2  
对980nm抽运的双包层Yb/Er共掺光纤放大器进行了数值模拟,分析了不同功率的信号光的增益情况,计算了稳态情况下光纤中反转粒子数,抽运光功率,信号光功率沿光纤轴向的分布以及放大器的斜率效率。当信号光初值较高时,通过模拟得到的斜率效率与实验结果相近。  相似文献   

15.
超荧光光源温度动态特性的分析及控制   总被引:1,自引:0,他引:1  
针对高精度光纤陀螺对光源稳定性的需求,提出了一种以32位数字信号处理器TMS320F2812为核心的掺铒超荧光光纤光源(SFS)的数字化温控方案。以该光纤光源(SFS)为研究对象,分析了现有的光源温度控制技术的优缺点;在模拟控制方案的基础上,提出了"数字恒流源+数字温控"的方案。研究了热电制冷器(TEC)的工作特性、SFS泵浦源的内部结构和传热机理,建立了SFS光源管芯温控系统的数学模型。设计了相应的连续域超前-滞后校正网络,并进行控制器的离散化处理,得到了PID数字补偿控制算法。最后,实验验证了SFS光源的数字化温控系统的温控精度。结果表明,在20~90℃,系统温控精度优于±0.05℃,满足了光纤陀螺低功耗、小型化等要求。  相似文献   

16.
用激光二极管(LD)抽运Nd∶YVO4晶体,采用四镜环形腔结构,腔内放置由法拉第旋光器,λ/2波片及布氏片组成的光学单向器,利用KTP内腔倍频技术,实现了高输出单频Nd∶YVO4绿光激光器及稳定的单频激光输出。在9 W的泵浦功率下,最大单频绿光输出为1.1 W,光-光转化效率为12.2%。在腔内插入Cr4+∶YAG晶体,又获得了脉宽为100 ns,重复频率为21 kHz的单纵模被动调Q激光输出。  相似文献   

17.
采用F-P腔结构研究了包层泵浦掺Yb3+微结构光纤激光器的输出特性。在以二向色镜作为腔镜的实验中,获得了斜率效率57%,波长1 074.5 nm,输出功率为2.65 W的稳定激光输出;在由二向色镜和光纤端面构成F-P腔的实验中,获得了斜率效率87%,最大输出功率为11.69 W的激光输出。  相似文献   

18.
808nm高亮度半导体激光器光纤耦合器件   总被引:1,自引:0,他引:1  
针对单个808nm单管半导体激光器输出功率低,采用端面泵浦方式对光纤激光器进行泵浦时受到限制的问题,本文利用空间合束技术制成高亮度半导体激光器光纤耦合模块来提高808nm单管半导体激光器泵浦掺Nd3+双包层光纤激光器的效率。首先,通过微透镜对每个单管半导体激光器进行快慢轴准直;然后,使用反射棱镜对每个激光器发出的光进行空间合束;最后,利用自行设计的扩束系统将合束后的光束进行扩束,聚焦进入光纤,从而极大地提高光纤耦合模块的亮度。实验中将4只连续输出功率为5W的单管半导体激光器发出的光束耦合进芯径为105μm、数值孔径(NA)为0.2的光纤,当工作电流为5.8A时,通过光纤输出的功率为15.22W,耦合效率达到74%,亮度超过1.4MW/cm2.sr。  相似文献   

19.
针对单个808 nm单管半导体激光器输出功率低,采用端面泵浦方式对光纤激光器进行泵浦时受到限制的问题,本文利用空间合束技术制成高亮度半导体激光器光纤耦合模块来提高808 nm单管半导体激光器泵浦掺Nd3+双包层光纤激光器的效率.首先,通过微透镜对每个单管半导体激光器进行快慢轴准直;然后,使用反射棱镜对每个激光器发出的光进行空间合束;最后,利用自行设计的扩束系统将合束后的光束进行扩束,聚焦进入光纤,从而极大地提高光纤耦合模块的亮度.实验中将4只连续输出功率为5W的单管半导体激光器发出的光束耦合进芯径为105 μm、数值孔径(NA)为0.2的光纤,当工作电流为5.8A时,通过光纤输出的功率为15.22W,耦合效率达到74%,亮度超过1.4 MW/cm2·sr.  相似文献   

20.
基于非线性偏振旋转(nonlinear polarization rotation, NPR)锁模机制的光纤激光器因其结构紧凑、可靠性高而备受关注。基于这一锁模原理设计并搭建了掺镱光纤飞秒激光器。当双向泵浦功率为380 mW,在1 030 nm波段获得了基频重复率为22.8 MHz的锁模脉冲。脉冲宽度为224 fs,平均功率180 mW,单脉冲能量8 nJ,10 dB带宽约为40 nm,信噪比大于50 dB。该激光器采用环形腔结构产生稳定的锁模飞秒脉冲输出,可实现自启动锁模。泵浦功率增加到1.6 W可观察到最高三阶被动谐波锁模,三次谐波对应68.5 MHz重复频率。该激光器由于在线宽、脉宽、脉冲能量上的优势,在光谱测量、拉曼成像等领域具有应用意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号