首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
提出了一种基于主动柔顺的机器人抛磨力控制方法,该力反馈末端执行器将被安装到ur协作机器人末端法兰的集成单元中。基于主动柔性装置的力/位混合控制策略,提出了抛磨系统控制装置控制机器人的位置并控制位置控制。通过集成一个力传感器,测量抛磨力并反馈给控制器,根据抛磨的预先计划要求对其进行调节。协作机器人末端执行器具有抛磨头,机器人控制器的力控算法操作抛磨头,从而实现恒力抛磨,以提供抛磨工具的柔度。在建模分析之后,使用复合非线性反馈控制算法来改善协作机器人本体的力控动态瞬时反映效果。经过实验表明,基于主动柔顺的机器人抛磨力控制算法可以有效的跟踪和补偿力和位置数据,具有较好的减振效果和显著的力跟踪效果。  相似文献   

2.
针对工业机器人进行接触式作业过程中对末端接触力的要求,提出了一种基于力控法兰的末端恒力控制方法。对力控法兰进行了分析建模与参数辨识,设计了模糊控制与比例积分微分(proportion integral derivative,简称PID)控制并行的模糊PID控制器,通过Matlab仿真对纯模糊控制与模糊PID控制效果进行了对比,并研究了模糊PID控制器各参数对控制性能的影响。最后,搭建了基于Labview和外部设备互连(peripheral component interconnect,简称PCI)总线数据采集卡的实验平台,对力控法兰末端输出力进行了实验验证。仿真结果表明,纯模糊控制可提高系统响应性能,但存在一定的稳态误差。加入PID控制与模糊控制并行控制后,仿真与实验证明,阶跃响应的稳态误差消除,正弦跟随效果明显改善,恒力控制输出力在期望力F=10N时波动误差为±0.8N。因此,通过模糊PID控制可实现力控法兰末端的恒力控制,具有较好的动态响应性和跟随鲁棒性。  相似文献   

3.
轨道交通车辆车体人工打磨方式存在诸多弊端,通过研究机器人打磨等核心技术,设计并开发了一种集成恒力控制装置的机器人末端打磨执行器。从打磨执行器功能需求出发设计了基本结构;具体阐述了打磨执行器接触力恒力控制组件的工作原理以及吸尘组件的设计过程;对打磨执行器框架进行静动态特性分析,验证了结构的合理性;最后通过打磨执行器可行性验证实验对该打磨执行器恒力控制和吸尘效果进行了评估,实验结果表明接触力恒力控制组件可以保证打磨过程中打磨执行器与工件接触面的法向力基本恒定,补偿作用明显。打磨执行器吸尘效果良好,保证了车间清洁,能够满足轨道交通车辆车体表面打磨制造要求。  相似文献   

4.
针对目前整体叶轮人力手工研磨过程中研磨品质差、出产周期长、工人健康危害大等问题,开发了一套基于六自由度库卡工业机器人的自动研磨控制系统.机器人末端夹持气动磨机贴合整体叶轮表面,利用六维力传感器反馈受力情况,结合在线恒力控制算法搭建复杂曲面机器人研磨恒力控制系统.根据机器人运动学理论,对机器人研磨过程中末端加工工具重力干扰进行补偿;建立机器人力/位置混合柔顺控制策略,采用传统PID控制策略进行基础力控制,采用模糊自适应PID控制策略进行优化力控制实现机器人自动研磨.对整体叶轮进行研磨实验,结果表明模糊自适应PID控制算法可以有效的实现机器人的柔顺控制,保持研磨过程接触力在有效范围内.  相似文献   

5.
针对目前整体叶轮人力手工研磨过程中研磨品质差、出产周期长、工人健康危害大等问题,开发了一套基于六自由度库卡工业机器人的自动研磨控制系统.机器人末端夹持气动磨机贴合整体叶轮表面,利用六维力传感器反馈受力情况,结合在线恒力控制算法搭建复杂曲面机器人研磨恒力控制系统.根据机器人运动学理论,对机器人研磨过程中末端加工工具重力干扰进行补偿;建立机器人力/位置混合柔顺控制策略,采用传统PID控制策略进行基础力控制,采用模糊自适应PID控制策略进行优化力控制实现机器人自动研磨.对整体叶轮进行研磨实验,结果表明模糊自适应PID控制算法可以有效的实现机器人的柔顺控制,保持研磨过程接触力在有效范围内.  相似文献   

6.
以复杂曲面为加工对象,将机器人、砂带机和在线恒力控制算法相结合构成机器人恒力抛光控制系统。对抛光系统加工过程中所受作用力进行分析,根据机器人运动学坐标变化,提出重力补偿算法,消除工件重力对恒力抛光控制系统的干扰。建立力/位置混合机器人主动柔顺控制策略,提出了基于最小二乘参数辨识的力控模型求解方案,并基于模糊PID完成过程控制,实现对抛光力的恒定控制。通过对卫浴五金件的磨抛实验,结果表明该算法可以有效的实现机器人柔顺控制,保持恒力磨抛。  相似文献   

7.
申耀武  唐细永  曾翔 《机械设计》2021,38(8):97-103
随着机器人智能化要求的不断提高,需要工业机器人作业可同时满足机器人末端接触力和位置期望跟踪控制,以期具有更好的顺应外部环境的能力,提高作业效率和质量.为此,文中搭建了基于力传感信息的工业机器人力/位控制试验平台,通过在机器人末端安装六维力传感器,并在不同位姿建立机器人重力补偿系统,提出了基于力传感信息的力/位控制算法,完成了基于力传感器机器人末端的力跟随试验.通过试验证明了机器人能够根据力传感器反馈的信息实时地对末端位姿进行调整,实现了顺从外力的功能,同时验证了以此进行的力跟随控制算法的正确性和合理性.  相似文献   

8.
简述了机器人力控制发展历史以及研究现状,分析了现有的主流力控制策略:阻抗控制、力/位混合控制、自适应控制和智能控制。进一步阐述了主流控制策略的优缺点以及实用性,指出了力控制所面临的问题,即位置伺服、鲁棒性和未知环境对力控制的影响以及力传感器的精确反馈问题,提出了智能控制必然是机器人力控制的发展趋势。  相似文献   

9.
机器人自动化抛光过程中,工具与工件间的接触力控制尤为重要.基于主动柔顺控制的原理,提出了面向工业机器人的柔顺力控装置及控制方法.进行了系统的结构设计和动力学建模,基于BP神经网络PID算法,设计了该柔顺力控装置的自适应控制策略.最后进行力控跟踪实验,实验结果表明,柔顺力控装置能够保证打磨过程中工件与工具之间的接触力恒定...  相似文献   

10.
面向机器人恒力打磨需求,文章设计了阻抗参数在线调整与离线优化的自适应阻抗控制算法,实现了打磨力控制。自适应阻抗控制算法将刚度参数作为时变参数,根据打磨接触力实时在线调整,以消除打磨过程中的稳态误差。针对阻尼参数和惯性参数难以整定的问题,以降低系统超调量和调整时间作为优化目标,采用改进粒子群算法进行阻抗参数离线优化。进行了机器人恒力打磨仿真,仿真结果表明,该方法可以综合改善机器人的恒力控制性能。开展了机器人恒力打磨实验,实验结果表明,该方法可以有效地提高机器人打磨表面质量。  相似文献   

11.
通过机器人完成产品的磨抛是新的趋势与热点,但普遍存在轨迹修正与力控制等方面的技术难点。为此构建了一套机器人打磨控制系统,提出了机器人力/位控制方法,利用三维力/力矩传感器实时进行打磨力信息的采集、补偿与反馈,通过解析力/位函数,实现法向偏置补偿。通过搭建试验平台并进行实验验证,表明控制方法可行,作业效果良好。  相似文献   

12.
基于模型预测控制的工业机器人曲面跟踪方法研究   总被引:1,自引:0,他引:1  
工业机器人执行接触性作业任务时,通常需要稳定控制接触力,比如在磨抛过程中,不平稳的法向接触力容易影响表面质量。为解决力跟踪控制时法向控制速度易超调和不确定环境造成法向接触力不平稳的问题,提出一种基于模型预测控制的工业机器人曲面跟踪方法。首先,根据工件模型几何信息计算出末端工具的运动轨迹,再结合机器人当前位姿求解末端工具的笛卡儿速度;然后,建立末端工具与工件接触时的状态空间模型,并依据末端工具的姿态变化对法向阻尼系数进行在线调节;最后,根据实时力信号的反馈,利用模型预测控制算法对法向速度进行修正,实现曲面恒力跟踪。基于Staubli TX90工业机器人,在末端工具姿态不变和姿态改变的情况下分别进行了曲面跟踪实验,结果显示法向接触力波动范围分别为±1 N和±2 N,方差分别为0.038 1 N2和0.105 9 N2,能够达到较好的力跟踪效果。  相似文献   

13.
针对抛光作业过程中的恒力问题,研究了工业机器人恒力抛光作业的主动柔顺控制系统。通过六维力传感器对采集到的力信号进行了滤波、重力补偿,得到抛光工具与工件间的实际接触力;采用模糊PID控制策略,控制恒力补偿装置实现柔顺位置补偿,保证抛光工具与工件间恒定的接触力,从而完成机器人对工件柔顺恒力抛光作业的要求。该方案可以满足抛光机器人对位置和力分别控制的要求。  相似文献   

14.
高精度低速伺服转台用于实现对惯性元件漂移误差的跟踪补偿.本文分析了测试转台性能要求,对控制系统进行了理论设计与实验研究.采用了模拟速度环、数字位置环相结合的混合控制方式,构造了控制系统硬件,其中光栅作为反馈元件,通过对其信号的适当处理作为模拟速度环和数字位置环的反馈信息,用一个元件实现多个信号的提取.重点分析了所构造控制系统尤其是的速度环.实验证明该系统实现了跟踪控制误差小于5″,完全达到了设计要求.  相似文献   

15.
为解决机器人在打磨、装配等复杂作业环境下,其末端力传感器获取到的机器人本体与作业环境间的接触力信号存在干扰噪声影响的问题,设计了基于卡尔曼滤波的机器人力控制模型.通过搭建力控制模块,对比经典阻抗控制与基于卡尔曼滤波的机器人力控制下的接触力跟踪效果,分别搭建平面轨迹跟踪与曲面轨迹跟踪机器人可视化平台.经仿真验证发现,两种工况下基于卡尔曼滤波的机器人力控制比经典阻抗控制的力控制效果更优.  相似文献   

16.
针对家电产品机器视觉在线检测应用场景中基于图像的视觉伺服不能保证全局收敛和单目视觉反馈不佳的问题,提出一种基于切换控制的双相机视觉伺服方法。首先使用全局相机估计目标位姿,引导机器人运动到期望位姿附近,确保视觉伺服方法能够收敛;然后根据机器人手上相机提供的图像偏差和深度信息,以及全局相机提供的目标速度和姿态实现双相机视觉伺服控制。相对于使用单应性矩阵的位置视觉伺服和混合视觉伺服方法,该方法能够定位与跟踪无标记目标,大幅提升跟踪的精度和稳定性。实验表明,基于切换控制的双相机视觉伺服方法可将控制周期缩短至33 ms,满足传送带速度在0.17 m/s范围内的机器人可获取清晰图像,实现实时跟踪检测。  相似文献   

17.
为了解决液压驱动工程机械臂在实际工程作业中加装位置传感器会使得系统复杂,从而可靠性降低,以及在关节处位置闭环伺服控制会导致液压系统效率降低的问题,提出在比例液压油缸驱动的机械臂中用位姿闭环而非关节位置闭环构成机器人控制系统。使用惯性导航、激光雷达、视觉等获得机械臂末端姿态,通过机器人运动学逆解得到当前关节值,与目标关节值形成闭环从而获得关节速度给定值。通过比例液压系统驱动机械臂关节,进而控制位姿变化。推导了负载敏感比例阀控液压油缸传递函数、陀螺仪姿态解算方程并对机械臂进行逆运动学分析。使用MATLAB/Simulink建立基于关节速度控制的液压驱动机械臂位姿闭环控制仿真模型,进行仿真实验,结果验证了控制方法的可行性。  相似文献   

18.
为解决机器人打磨风电叶片过程中由于理想打磨轨迹和实际打磨轨迹有偏差导致打磨质量差的问题,文中设计了一种安装在机械臂末端的气动柔顺末端执行器,气动柔顺末端控制器控制工件的打磨力,机器人控制器控制打磨末端位姿。由于气动柔顺末端力控制过程中存在强非线性、模型不精确及参数摄动、机器人运动、打磨小车振动等不确定性扰动,在气动柔顺末端建模的基础上设计线性扩张状态观测器、跟踪微分器,提出了自抗扰(ADRC)打磨力控制律。仿真和试验结果表明:该方法有效减小了磨削过程中力的波动,提高了风电叶片表面质量,更好地避免了磨削烧伤,具有抗干扰性强、稳定性强及效率高等特点。  相似文献   

19.
为了让舰船载稳定平台能够平稳运行,设计并实现了一种高效的专用智能电液伺服控制系统。该系统采用STM32作为控制器核心,以磁致伸缩位移传感器的位置信号作为反馈信号,阀控伺服油缸作为致动器形成闭环反馈的控制结构。系统通过三维天牛须搜索法优化PID控制参数,实现电液位置伺服控制,改进了Z-N法参数整定不准确的缺点。实验结果表明:该系统具备良好的瞬态响应性能与控制品质。  相似文献   

20.
针对卫星装配过程中关键零部件质量体积较大,不易装配的问题,提出了基于力觉交互控制的机械臂精密位姿控制技术,通过在机器人末端安装六维力/力矩传感器,实时获取机器人末端负载重力和末端所受外部作用力,并将负载重力和外部作用力解耦,进而实现外部作用力对机械臂末端位姿的精密控制。同时,对机器人辅助装配控制系统及其架构进行了介绍,并提出了一种简单可行的六维力传感器标定方法。试验结果表明:该技术可以实现机器人末端位置的精密控制,具有结构简单、计算量小、操作方便等特点。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号