首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 31 毫秒
1.
微合金高强度低碳贝氏体钢中不同强化方式的作用   总被引:1,自引:0,他引:1  
为了掌握微合金高强度低碳贝氏体钢中不同强化方式的贡献大小,采用正电子湮没技术、透射电子显微镜及扫描电子显微镜分析了该钢热轧和回火处理后的显微组织、位错密度及第二相粒子的形貌及尺寸,对其屈服强度进行了定量计算,并采用多功能材料试验机对该钢的力学性能进行了测试。结果表明:该钢的位错密度约为2.65×10~(14) m~(-2),位错强化是该钢主要的强化方式,对屈服强度的贡献值约327 MPa,占其屈服强度的41.3%;该钢中存在大量细小弥散的球状或近球状的(Ti,Nb)(C,N)第二相粒子,其尺寸多在10 nm以下,析出强化对屈服强度的贡献值约为172 MPa,占屈服强度的21.7%;固溶强化和间隙原子强化的贡献值分别约为129 MPa和94 MPa,分别占屈服强度的16.3%和11.9%;理论计算值与实测值基本吻合。  相似文献   

2.
采用电液伺服万能试验机、X射线衍射仪、金相显微镜和透射电子显微镜,研究了应变强化对022Cr17Ni12Mo2奥氏体不锈钢微观组织和力学行为的影响。结果表明:前期预应变强化过程中,材料没有发生相变,形变孪晶数量的增加使材料的屈服强度和硬度得到大幅提高,但塑性有所降低,发生形变孪晶诱发强度效应。随着预应变量的增大,应变强化能力减弱,瞬变应变有所降低,位错的滑移模式发生转变,从单系滑移和平面滑移向多系滑移和交滑移转变。  相似文献   

3.
用X射线线形分析法(XLPA)测定了经表面机械研磨处理(SMAT)后纯铁的有效晶粒(亚晶)尺寸、微观应变、位错密度和体弹性储能密度,用TEM观察了组织形貌,并与40%拉伸试样进行了对比.结果表明:纯铁经SMAT 90 min后,平均位错密度高达1.0×10 16m-2,表面亚晶粒尺寸在7 nm左右;相对拉伸而言,SMAT对晶粒细化和引入微观应变的效果十分明显;XLPA法与TEM法得到的晶粒尺寸基本一致.  相似文献   

4.
采用不同能量和束流的氦离子对再结晶钨表面进行辐照试验,对辐照损伤分别为0.2,0.5,1.0 dpa下钨的微观形貌进行观察,并采用不同半径(1,5,10μm)球形压头对其进行纳米压痕试验,获得压痕应力-应变曲线,探究其力学性能的变化及原因。结果表明:不同损伤程度辐照后钨表面损伤层的厚度为554~558 nm;随着辐照损伤程度的加剧,钨中位错环密度明显增大;辐照后钨的压痕应力-应变曲线均未出现突跳现象,且随着辐照损伤程度的增加,屈服强度提高,压痕弹性模量基本保持不变,辐照后产生的位错环缺陷是引起钨力学性能发生变化的直接原因;钨的力学性能具有压痕尺寸效应,压头半径越小,钨的屈服强度越高,未辐照钨的压痕应力-应变曲线出现突跳现象时的压痕应力越大。  相似文献   

5.
铸态SiCW/Al复合材料的表面喷丸强化   总被引:1,自引:0,他引:1  
对铸态20%SiCw/6A02Al复合材料进行了表面喷丸处理,测量了表层基体残余应力的分布情况, 建立了复合材料表层基体屈服强度的X射线试验方法,探讨了其表层喷丸强化效应。结果表明:经喷丸处理后复合材料表层基体呈现出较大残余压应力状态,X射线衍射峰半高宽度即显微组织强化效应明显增大,导致复合材料表层基体屈服强度提高。  相似文献   

6.
纯铝表面机械研磨纳米化后的显微组织和硬度   总被引:2,自引:0,他引:2  
对纯铝进行表面机械研磨处理形成纳米层,用XRD、TEM对表面纳米层进行了表征,并对沿深度方向的硬度变化进行分析.结果表明:晶粒细化后的主要微观特征是在原始晶粒内形成位错缠结、位错胞和高密度位错墙;随着应变的增加,这些位错组态逐渐演变成位错胞、亚晶、位错墙-显微带结构和层状胞块结构;随着应变和应变速率的进一步增加,晶粒细化遵循逐渐细分原则,逐渐在表面形成随机取向的纳米晶;与试样心部硬度相比,其表面硬度明显提高.  相似文献   

7.
采用透射电镜观察了大应变量拉拔变形前后SWRH72A钢丝的显微组织,研究了钢丝的力学性能及珠光体片层间距随应变量的变化关系.结果表明:钢丝的抗拉强度和屈服强度均随着应变量的增大而增大,伸长率则随着应变量的增大先急剧下降,而后基本保持不变;钢丝显微组织中的珠光体片层间距随着应变量增大逐渐减小,基本上符合Langford的指数衰减规律,经过ε=2.6的冷拔变形后,珠光体片层间距由变形前的200 nm减小到50 nm左右;经过大应变量拉拔变形后,铁素体内的位错密度显著升高,形成大量的位错胞,变形后铁素体具有特殊取向.  相似文献   

8.
表面强化可提高高速列车车轴疲劳性能,延长使用寿命。对广泛应用于高速列车的EA4T车轴钢表面进行滚压处理,使用激光共聚焦显微镜表征表面形貌和粗糙度;借助光学显微镜分析滚压处理前后试样的显微组织,并采用EBSD测试滚压试样表层晶粒尺寸;采用显微硬度计测试强化层显微硬度分布并与未处理试样进行对比,采用X射线衍射残余应力分析仪分析其残余应力分布;基于旋转弯曲疲劳试验和扫描电子显微镜下的断口观测分析试样的疲劳性能。研究结果显示:滚压强化后,试样表层发生塑性变形,表面质量得到改善,且形成厚度约为400μm的硬化层,表层产生纳米晶;显微硬度提高了29%,表面最大残余应力为-576MPa,试样显微硬度和残余应力变化趋势一致,均为从表面向心部减小;滚压试样疲劳强度增幅为28%。试验结果表明,滚压是车轴延长寿命的一种有效方式。  相似文献   

9.
小切深磨削条件下工件表面硬化机理   总被引:1,自引:0,他引:1  
以位错运动造成塑性变形的理论为基础,深入分析了小切深条件下磨削力机械作用硬化机理和材料热相变硬化机理。通过不同磨削参数的小切深磨削硬化试验,分析磨削硬化过程中不同磨削参数条件对工件表面强化层形成的影响及其金相组织转变的情况,深入研究磨削强化层组织的形成机理。试验结果表明,小切深条件下磨削加工试件表面的硬化主要以位错运动而产生的强化层为主,提高磨削深度和降低工件进给速度会增大工件表面显微残余应力,增强试件表层硬化层的形成效果。  相似文献   

10.
切削浅表层显微结构状态对机械构件力学性能和服役寿命有重要影响。为获得性能优良的切削表层,综合应用理论计算和测试分析的研究手段,对不同切削速度下高强合金钢浅表层微观结构演变和力学性能强化的内在关联展开研究。结果表明:中高切削速度能够相对最大程度实现高强钢切削表层梯度微观结构的形成,由表及里分别为致密纳米等轴晶所在的回复层,高密度亚结构聚集的流变层和晶粒残留畸变状态的畸变层。中高切速下平均晶粒尺寸相对最小(392.1 nm),同时位错密度相对最高(1.072 5×1012 cm-2),变形应变、位错和小角度晶界等亚结构均高度集中于流变层。经性能测试发现,中高切速实现了高强合金钢切削浅表层硬度、表面质量和韧性的同时提升,这是上述中高切速带来的微观结构变化所形成的细晶强化和位错强化综合作用的结果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号