首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 125 毫秒
1.
基于分形理论,考虑摩擦因素的影响,应用描述三维粗糙表面形貌的W-M函数,推导了结合面切向阻尼能耗和切向等效黏性阻尼三维分形模型.使用Matlab软件进行仿真分析,结果显示:结合面的切向阻尼能耗随着法向总载荷、摩擦因数的增大而减小,随着材料塑性指数、切法向载荷比、分形粗糙度参数的增大而增大;结合面的切向接触阻尼能耗和分形维数之间的关系比较复杂;结合面的切向接触等效黏性阻尼随着摩擦因数、分形粗糙度参数的增大而减小,随着法向总载荷、切法向载荷比、材料塑性指数的增大而增大;结合面的切向接触等效黏性阻尼随着分形维数增大先增大后减小,在分形维数等于2.7附近时取最大值;当分形维数等于2.1~2.5时,结合面的切向接触等效黏性阻尼和法向总载荷呈现明显的非线性关系;当分形维数2.5~2.9时,结合面的切向接触等效黏性阻尼和法向总载荷趋于线性关系.  相似文献   

2.
为准确且方便地计算两球面的切向接触刚度(TCS),在前期对两球面接触分形模型研究的基础上,通过引入考虑摩擦因素的弹塑性变形临界面积计算公式,并基于接触面切向刚度基本理论,建立了考虑摩擦因素的两球面切向接触刚度的分形模型。对模型进行了仿真分析,结果表明:切向接触刚度与法向载荷成正比关系;摩擦因数与切向接触刚度的关系因分形维数的变化而呈现出不同的规律;受到分形维数变化的影响,切向接触刚度随接触面材料特性参数和分形粗糙度幅值的增大而增大;在一定工况下,切向接触刚度在分形维数取1.5时达到最大,且当分形维数在1.5左右时,其值增大最快;球面内接触比外接触时的切向刚度大;随着曲率半径的增大,切向刚度增大。研究结果为后续开展高副结合面(如轴承等)润滑及动力学分析提供了理论基础。  相似文献   

3.
考虑摩擦的圆柱面切向接触刚度分形模型研究*   总被引:1,自引:0,他引:1  
为了更准确地计算圆柱面切向接触刚度,本文考虑摩擦因素的影响,在圆柱面分形接触模型的基础上,引入存在摩擦时弹塑性变形的临界面积公式,并利用切向接触刚度的基本理论,推导考虑摩擦的圆柱面切向接触刚度分形模型,并通过Matlab对上述模型进行仿真,研究不同参数(摩擦因数、分形维数、粗糙度幅值 、材料的特性参数、曲率半径)以及接触的形式对切向接触刚度的影响。仿真结果表明:切向接触刚度与法向载荷成正比关系,但随分形维数取值范围的变化分别呈现指数与线性规律。摩擦因数与切向接触刚度成反比关系;材料的特性参数对切向刚度的影响,不仅与分形维数有关,还与自身取值关联;分形维数,粗糙度幅值与切向刚度的关系,受分形维数和材料特性参数的影响呈现正比或反比趋势。另外,内接触比外接触时的切向刚度大;随着曲率半径的变大,切向刚度增加。该研究为后续开展高副结合面动力学分析提供理论 基础。  相似文献   

4.
基于三维分形理论,建立了同时考虑摩擦和微凸体相互作用影响的结合面法向接触刚度和接触阻尼分形模型。通过对所建模型仿真,分析了摩擦因数、分形维数、分形粗糙度参数和接触载荷对接触刚度和接触阻尼的影响。研究结果表明,该模型的接触刚度和接触阻尼随着法向载荷和分形维数的增大而增大,且会随着分形粗糙度参数的增大而变小;接触刚度随着摩擦因数的增大而减小,而接触阻尼则随着摩擦因数的增大而先增大后减小。另外将仅考虑微凸体相互作用和既无摩擦又无微凸体相互作用的情况进行了对比分析,进而得到当分形维数D=2.4时,微凸体相互作用会稍微增大接触刚度;当D≥2.5时,微凸体相互作用会减小接触刚度,且减小的程度越来越大;当2.4≤D≤2.9时,微凸体相互作用会减小接触阻尼。此外,将所建模型的仿真计算结果与实验数据进行对比分析,验证了所建模型的正确性。  相似文献   

5.
《机械传动》2017,(2):32-36
以M-B分形模型为基础,结合齿轮两圆柱体接触面积的分布公式,推导具有各向异性分形理论的齿轮结合面切向接触刚度计算模型。通过MATLAB仿真,获得模型中主要参数对分形接触模型影响的预测分析。结果表明,齿轮结合面的切向接触刚度与材料特性参数、齿轮齿数成正比,与无量纲粗糙度幅值、总切向载荷与总法向载荷之比成反比。当分形维数较小(D1.7)时,齿轮结合面的切向接触刚度与分形维数成正比;当分形维数较大(D≥1.7)时,齿轮结合面的切向接触刚度与分形维数成反比。  相似文献   

6.
为了获得微动结合面较精确的法向接触刚度模型,研究影响接触刚度的因素,基于经典的G-W (greenwood-williamson)统计模型和分形模型,建立了考虑摩擦因素的结合面的接触刚度分形模型,并推导出了相应的刚度公式.通过数值仿真探讨了分形维数、摩擦系数、接触载荷、结合面积等4个因素对结合面法向接触刚度的影响.研究表明,所推导出的法向接触刚度模型能够有效模拟具有摩擦作用的结合面,结合面间的摩擦系数对法向接触刚度的影响与结合面的尺寸有很大的关系,结合面之间的分形维数、接触载荷、结合面积对法向接触刚度有很大的影响.  相似文献   

7.
为了准确计算微线段齿轮啮合时的法向接触刚度,引入摩擦因素的影响,通过修正考虑摩擦的弹塑性变形临界面积公式、接触面积公式和刚度公式,结合圆柱结合面接触点面积分布公式,基于已有的结合面法向接触刚度的分形模型,推导出适用于微线段齿轮轮齿法向接触刚度分形模型。通过该模型建立法向接触刚度与法向载荷之间的关系,以及分析模型中的参数对法向接触刚度的影响发现:在无摩擦条件下,相同载荷下的接触刚度最大,且接触刚度随着摩擦因数的增大而减小,在摩擦因数较小时,摩擦因数的改变对圆柱体法向接触刚度的影响也较小;表面微观因素对法向接触刚度的影响需综合考虑分形维数和分形粗糙度幅值的相互影响,二者有着较为复杂的关系;内接触形式、增大材料特性参数和圆柱体半径均可使法向接触刚度增大。最后,选取一组不同加工表面粗糙度的微线段齿轮为对象进行仿真,为微线段齿轮加工方法和工艺选择提供参考。  相似文献   

8.
从微观角度出发,基于结合面的"固-隙-固"接触模型、摩擦学理论和分形接触理论建立了考虑域扩展因子影响的结合面法向接触刚度的分形预估模型,在一定程度上完善了结合面动力学参数的分型模型.通过仿真分析揭示了法向载荷、分形维数、尺度参数以及单个微凸体接触刚度和材料参数对结合面法向接触刚度的影响。仿真分析表明:结合面法向刚度系数随着法向载荷的增大而增大,增大结合面法向载荷有利于提高结合面的法向接触刚度;在不同分形维数的范围内,法向接触刚度均随着结合面分形维数不同而不同.此外,法向接触刚度随着分形特征长度尺度参数的增大而减小,随着单个微凸体接触刚度的增大而增大;而材料参数的增大,使得法向接触刚度也增大.  相似文献   

9.
针对现有结合面静摩擦因数分形模型的静摩擦因数随结合面法向接触载荷增大而增大,与试验研究结论及统计模型不一致的问题,基于尺度等级定义微凸体的大小,严格区分微凸体高度与变形,构建各尺度等级微凸体的法向接触载荷与接触面积之间关系及其发生弹性和弹塑性第一变形时所能承受的最大切向载荷即最大静摩擦力计算模型,进而建立结合面法向接触载荷与最大静摩擦力计算模型,在此基础上,依据结合面静摩擦因数定义,提出与微凸体尺度等级关联的考虑微凸体完全弹性、弹塑性和完全塑性三种变形机制的结合面静摩擦因数三维分形模型,数值仿真分析了结合面静摩擦因数与法向接触载荷和分形维数D等的关系,结果表明结合面静摩擦因数随着结合面法向接触载荷的增大而减小,随着分形维数的增大而增大,并试验实例验证了所建模型的正确性,解决了现有结合面静摩擦因数分形模型与统计模型和试验结果之间的不一致性.  相似文献   

10.
基于分形几何理论,考虑微凸体因应变硬化而造成弹塑性变形阶段硬度随变形量变化而变化,建立结合面第一、第二弹塑性变形阶段单次加载刚度分形模型。推导出在计入硬度变化的情况下,单个微凸体在弹塑性变形阶段法向接触刚度与接触面积之间的关系式,进而得出结合面在弹塑性变形阶段法向接触刚度与接触面积、接触载荷之间量纲为一的关系式,并通过仿真分析得出相关参数对结合面法向接触刚度的影响。仿真结果显示:考虑硬度变化时,结合面量纲一法向接触刚度的值与法向实际接触载荷、实际接触面积之间存在关系;结合面法向接触刚度随着分形维数D的增大而增大;分形维数一定时,结合面法向接触刚度随表面长度尺度参数G值增大而增大。  相似文献   

11.
基于各向异性分形几何理论,考虑微凸体变形特点、表面微凸体承受法向载荷的连续性和光滑性原理,以及区分微凸体分别处于弹性、塑性变形时的一个微凸体实际微接触面积,建立固定结合部法向接触力学模型。采用二变量Weierstrass-Mandelbrot函数模拟各向异性三维分形轮廓表面。推导出划分弹塑性区域的临界弹性变形微接触截面积、结合部量纲一法向载荷、结合部量纲一法向接触刚度的数学表达式。数值仿真结果表明:当表面形貌的分形维数、分形粗糙度一定时,真实接触面积随着结合部法向载荷的增大而增大;结合部法向接触刚度随着真实接触面积、结合部法向载荷、相关因子或材料特性参数的增大而变大;当分形维数由1变大时,结合部法向接触刚度随着分形维数的变大而增大;当分形维数增加到趋近于2时,结合部法向接触刚度有时却会随着分形维数的增加而降低。结合部法向接触力学模型的构建,有助于分析固定接触表面间的真实接触情况。  相似文献   

12.
基于分形理论的滑动摩擦表面接触力学模型   总被引:11,自引:0,他引:11  
依据分形理论,考虑微凸体变形特征及摩擦作用的影响建立滑动摩擦表面接触力学模型。采用一个三次多项式来表达弹塑性变形微凸体的接触压力与接触面积的关系,从而满足在变形状态转变临界点处的微凸体接触面积与接触压力转化皆是连续和光滑的条件。推导出滑动摩擦表面临界弹性变形微接触面积、临界塑性变形微接触面积、量纲一真实接触面积的数学表达式。理论计算结果表明,表面形貌一定时,真实接触面积随着载荷的增大而增大;载荷一定时,真实接触面积随着特征尺度系数的增大而减小,随着分形维数的增大先增大后减小;当表面较粗糙时,摩擦因数对真实接触面积的影响很小;随着表面光滑程度的增大,摩擦因数对真实接触面积的影响增大,真实接触面积随着摩擦因数的增大而增大,特别是当摩擦因数较大时,真实接触面积增大的幅度也较大。接触力学模型的建立,为研究滑动摩擦表面间的摩擦磨损性能提供了依据。  相似文献   

13.
基于分形理论的圆弧齿轮滑动摩擦接触力学模型   总被引:1,自引:0,他引:1  
考虑到圆弧齿线圆柱齿轮传动接触之间的滑动摩擦与微凸体的连续性变形,结合分形理论和Hertz接触理论建立圆弧齿线圆柱齿轮的滑动摩擦接触力学模型,通过模型数值分析与ANSYS WORKBENCH分析的最大接触应力结果对比,证明该模型所反映圆弧齿线圆柱齿轮接触应力状态的正确性。该模型中,载荷与真实接触面积之间关系不仅与分形维数和特征尺度系数有关,还与齿轮节点曲率和齿轮齿线半径有关。同时,理论计算表明,分形维数一定时,真实接触面积随着载荷的增大而增大;载荷一定时,真实接触面积随着分形维数的增大先增大后减小,随着特征尺度系数的增大而减小;摩擦因数对真实接触面积的影响不大。该模型的建立为圆弧齿线圆柱齿轮工作状态的研究及强度分析提供了理论依据。  相似文献   

14.
准确建立高保真的螺栓结合面非线性力学模型是分析高端装备的前提和基础。针对螺栓结合面的迟滞非线性力学问题,提出了一种修正Iwan模型的力学建模方法,使得传统唯象的Iwan模型各参数物理意义更加明确。首先,根据多尺度理论和数理统计方法,建立了具有连续光滑接触特性的结合面法向接触模型;然后,通过考虑动态和静态摩擦因数的差异并利用库仑摩擦定律,将修正后的Iwan唯象模型与具体的法向接触模型联系起来,提出了新的螺栓结合面切向响应模型;最后,基于Matlab仿真和已有的试验数据,验证了所建模型的正确性,并探究了加载条件、塑性指数和动静摩擦因数比对结合面接触特性的影响。研究表明:一个周期加、卸载的能量耗散是随着位移幅值的增加而递增;相比于塑性指数,动静摩擦因数比的改变对结合面切向载荷的影响更为显著,在后续研究中需重点考虑;微凸体临界滑移力分布受其他因素的影响主要体现在接触微凸体的数目、峰值点的位置以及曲线收敛速度的改变。  相似文献   

15.
为综合体现摆线轮齿与针齿的宏观特征和微观特征对接触特性的影响,应用Weierstrass-Mandelbrot函数和矢量函数构建了摆线轮齿与针齿的表面形貌模型,应用MATLAB绘制了各向同性的粗糙针齿以及单个摆线轮齿的二维截面图,提出了摆线轮齿与针齿的接触比例系数,该接触比例系数始终小于1,且随啮合点的变化而变化,针齿与摆线轮齿的内凹部分接触时的接触比例系数远大于针齿与摆线轮齿外凸部分接触时的值。计及摩擦因素的影响,构建了单对摆线轮齿与针齿的分形接触模型,分析了摩擦因子、结合面的微观特征和宏观特征对接触特性的影响。研究结果表明,相同载荷下,接触面积随摩擦因子的增大而增大,随结合面粗糙度的增大先增大后减小,随针齿半径的增大而减小,随中心距的增大而减小,随针轮中心圆半径的增大而增大,随针轮齿数的增加而减小。  相似文献   

16.
为研究液黏传动过程中粗糙表面的承载特性,将分形理论引入到两粗糙表面摩擦过程之中,分析传动过程中混合摩擦和边界摩擦两阶段的微凸体承载过程,考虑微凸体弹塑性变形,对M-B模型进行修正,建立修正的微凸体承载模型。建立基于修正M-B模型的微凸体承载模型。通过数值仿真得到有效面积系数、分形参数对液黏调速离合器传动过程的影响规律;对修正的微凸体承载模型的计算结果与M-B模型的计算结果进行对比分析。结果表明:微凸体接触载荷和传递转矩随着面积比的增大而增大,当有效面积系数与尺度系数增大时,接触载荷与传递转矩均有所增大;分形维数为1.5时,微凸体接触载荷与传递转矩最小且随面积比的变化最为缓慢;在整个接触区域内,弹性变形区域的面积、接触载荷以及传递转矩最大,其次是弹塑性变形区域,塑性变形区域最小;考虑弹塑性变形时,微凸体接触载荷与传递转矩均有所下降;修正M-B模型和M-B模型间的修正系数范围在25%以内,修正系数随着有效面积系数、尺度系数的增大而增大,随着分形维数的增大而减小。  相似文献   

17.
基于分形接触的静摩擦系数预测   总被引:16,自引:0,他引:16  
根据M-B分形接触模型对静摩擦系数进行预测。对分形参数D、G及材料参数φ对静摩擦系数的影响进行研究。结果表明静摩擦系数随载荷的增加而增加。这与在极低载荷下静摩擦系数很小的试验事实吻合,因此,M-B分形接触模型可能仅适用于载荷极小的情况。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号