首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 850 毫秒
1.
基于Timoshenko梁理论研究弹性地基上转动功能梯度材料(FGM)梁的自由振动。首先确定功能梯度材料Timoshenko梁的物理中面,利用广义Hamilton原理推导出该梁在弹性地基上转动时横向自由振动的两个控制微分方程。其次采用微分变换法(DTM)对控制微分方程及其边界条件进行变换,计算了弹性地基上转动功能梯度材料Timoshenko梁在夹紧-夹紧、夹紧-简支和夹紧-自由三种不同边界条件下横向自由振动的量纲一固有频率,与已有文献的计算结果进行比较,退化后结果一致。最后讨论了不同边界条件、转速、弹性地基模量和梯度指数对功能梯度材料Timoshenko梁自振频率的影响。结果表明:功能梯度材料Timoshenko梁的量纲一固有频率随量纲一转速和量纲一弹性地基模量的增大而增大;在量纲一转速和量纲一弹性地基模量一定的情况下,梁的量纲一固有频率随着功能梯度材料梯度指数的增大而减小。  相似文献   

2.
基于经典梁理论(CBT)研究轴向力作用下纤维增强功能梯度材料(FGM)梁的横向自由振动和临界屈曲载荷问题。首先考虑由混合律模型来表征纤维增强FGM梁的材料属性,其次利用Hamilton原理推导轴向力作用下纤维增强FGM梁横向自由振动和临界屈曲载荷的控制微分方程,并应用微分变换法(DTM)对控制微分方程及边界条件进行变换,计算了纤维增强FGM梁在固定-固定(C-C)、固定-简支(C-S)和简支-简支(S-S)3种边界条件下横向自由振动的无量纲固有频率和无量纲临界屈曲载荷。退化为各向同性梁和FGM梁,并与已有文献结果进行对比,验证了本文方法的有效性。最后讨论在不同边界条件下纤维增强FGM梁的刚度比、纤维体积分数和无量纲压载荷对无量纲固有频率的影响以及各参数对无量纲临界屈曲载荷的影响。  相似文献   

3.
An analytical approach for crack identification procedure in uniform beams with an open edge crack, based on bending vibration measurements, is developed in this research. The cracked beam is modeled as two segments connected by a rotational mass-less linear elastic spring with sectional flexibility, and each segment of the continuous beam is assumed to obey Timoshenko beam theory. The method is based on the assumption that the equivalent spring stiffness does not depend on the frequency of vibration, and may be obtained from fracture mechanics. Six various boundary conditions (i.e., simply supported, simple–clamped, clamped–clamped, simple–free shear, clamped–free shear, and cantilever beam) are considered in this research. Considering appropriate compatibility requirements at the cracked section and the corresponding boundary conditions, closed-form expressions for the characteristic equation of each of the six cracked beams are reached. The results provide simple expressions for the characteristic equations, which are functions of circular natural frequencies, crack location, and crack depth. Methods for solving forward solutions (i.e., determination of natural frequencies of beams knowing the crack parameters) are discussed and verified through a large number of finite-element analyses. By knowing the natural frequencies in bending vibrations, it is possible to study the inverse problem in which the crack location and the sectional flexibility may be determined using the characteristic equation. The crack depth is then computed using the relationship between the sectional flexibility and the crack depth. The proposed analytical method is also validated using numerical studies on cracked beam examples with different boundary conditions. There is quite encouraging agreement between the results of the present study and those numerically obtained by the finite-element method.  相似文献   

4.
As one of the main failure modes, embedded cracks occur in beam structures due to periodic loads. Hence it is useful to investigate the dynamic characteristics of a beam structure with an embedded crack for early crack detection and diagnosis. A new four-beam model with local flexibilities at crack tips is developed to investigate the transverse vibration of a cantilever beam with an embedded horizontal crack; two separate beam segments are used to model the crack region to allow opening of crack surfaces. Each beam segment is considered as an Euler-Bernoulli beam. The governing equations and the matching and boundary conditions of the four-beam model are derived using Hamilton's principle. The natural frequencies and mode shapes of the four-beam model are calculated using the transfer matrix method. The effects of the crack length, depth, and location on the first three natural frequencies and mode shapes of the cracked cantilever beam are investigated. A continuous wavelet transform method is used to analyze the mode shapes of the cracked cantilever beam. It is shown that sudden changes in spatial variations of the wavelet coefficients of the mode shapes can be used to identify the length and location of an embedded horizontal crack. The first three natural frequencies and mode shapes of a cantilever beam with an embedded crack from the finite element method and an experimental investigation are used to validate the proposed model. Local deformations in the vicinity of the crack tips can be described by the proposed four-beam model, which cannot be captured by previous methods.  相似文献   

5.
In this paper, an analytical, as well as experimental approach to the crack detection in cantilever beams by vibration analysis is established. An experimental setup is designed in which a cracked cantilever beam is excited by a hammer and the response is obtained using an accelerometer attached to the beam. To avoid non-linearity, it is assumed that the crack is always open. To identify the crack, contours of the normalized frequency in terms of the normalized crack depth and location are plotted. The intersection of contours with the constant modal natural frequency planes is used to relate the crack location and depth. A minimization approach is employed for identifying the cracked element within the cantilever beam. The proposed method is based on measured frequencies and mode shapes of the beam.  相似文献   

6.
新型非均匀复合材料,功能梯度材料具有防止脱层和减缓热应力等优良性能,将其应用于功能梯度梁的结构有着非常重要的工程应用价值。基于Euler-Bernoulli梁理论和Hamilton原理,建立轴向运动功能梯度梁横向自由振动的运动微分方程,其中假设功能梯度梁的材料特性沿梁厚度方向按各组分材料体积分数的幂函数连续变化;再对运动微分方程和边界条件进行量纲一处理,采用微分求积法对其进行离散化,导出系统的广义复特征方程,然后计算分析轴向运动功能梯度简支梁横向振动复频率的实部和虚部随量纲一轴向运动速度、梯度指标等参数的变化情况,并讨论量纲一轴向运动速度和梯度指标对功能梯度梁的横向振动特性以及失稳形式的影响。  相似文献   

7.
A dynamic finite element method for free vibration analysis of generally laminated composite beams is introduced on the basis of first-order shear deformation theory. The influences of Poisson effect, couplings among extensional, bending and torsional deformations, shear deformation and rotary inertia are incorporated in the formulation. The dynamic stiffness matrix is formulated based on the exact solutions of the differential equations of motion governing the free vibration of generally laminated composite beam. The effects of Poisson effect, material anisotropy, slender ratio, shear deformation and boundary condition on the natural frequencies of the composite beams are studied in detail by particular carefully selected examples. The numerical results of natural frequencies and mode shapes are presented and, whenever possible, compared to those previously published solutions in order to demonstrate the correctness and accuracy of the present method.  相似文献   

8.
A single-walled nanotube structure embedded in an elastic matrix is simulated by the nonlocal Euler-Bernoulli, Timoshenko, and higher order beams. The beams are assumed to be elastically supported and attached to continuous lateral and rotational springs to take into account the effects of the surrounding matrix. The discrete equations of motion associated with free transverse vibration of each model are established in the context of the nonlocal continuum mechanics of Eringen using Hamilton's principle and an efficient meshless method. The effects of slenderness ratio of the nanotube, small scale effect parameter, initial axial force and the stiffness of the surrounding matrix on the natural frequencies of various beam models are investigated for different boundary conditions. The capabilities of the proposed nonlocal beam models in capturing the natural frequencies of the nanotube are also addressed.  相似文献   

9.
Smart structure with active materials embedded in a rotating composite thin-walled beam is a class of typical structure which is using in study of vibration control of helicopter blades and wind turbine blades. The dynamic behavior investigation of these structures has significance in theory and practice. However, so far dynamic study on the above-mentioned structures is limited only the rotating composite beams with piezoelectric actuation. The free vibration of the rotating composite thin-walled beams with shape memory alloy(SMA) fiber actuation is studied. SMA fiber actuators are embedded into the walls of the composite beam. The equations of motion are derived based on Hamilton’s principle and the asymptotically correct constitutive relation of single-cell cross-section accounting for SMA fiber actuation. The partial differential equations of motion are reduced to the ordinary differential equations of motion by using the Galerkin’s method. The formulation for free vibration analysis includes anisotropy, pitch and precone angle, centrifugal force and SMA actuation effect. Numerical results of natural frequency are obtained for two configuration composite beams. It is shown that natural frequencies of the composite thin-walled beam decrease as SMA fiber volume and initial strain increase and the decrease in natural frequency becomes more significant as SMA fiber volume increases. The actuation performance of SMA fibers is found to be closely related to the rotational speeds and ply-angle. In addition, the effect of the pitch angle appears to be more significant for the lower-bending mode ones. Finally, in all cases, the precone angle appears to have marginal effect on free vibration frequencies. The developed model can be capable of describing natural vibration behaviors of rotating composite thin-walled beam with active SMA fiber actuation. The present work extends the previous analysis done for modeling passive rotating composite thin-walled beam.  相似文献   

10.
In this paper, free transverse vibration of two parallel beams connected through Winkler type elastic layer is investigated. Euler-Bernoulli beam hypothesis has been applied and it is assumed that boundary conditions of upper and lower beams are similar while arbitrary without any limitation even for non-ideal boundary conditions. Material properties and cross-section geometry of beams could be different from each other. The motion of the system is described by a homogeneous set of two partial differential equations, which is solved by using the classical Bernoulli-Fourier method. Explicit expressions are derived for the natural frequencies. In order to verify accuracy of results, the problem once again solved using modified Adomian decomposition method. Comparison between results indicates excellent accuracy of proposed formulation for any arbitrary boundary conditions. Derived explicit formulation is simplest method to determine natural frequencies of double-beam systems with high level of accuracy in comparison with other methods in literature.  相似文献   

11.
将呼吸裂纹梁简化为由扭转弹簧连接的两段弹性梁,在假定振动响应随振幅变化的基础上推导出呼吸裂纹梁的固有频率方程;考虑振动过程中呼吸裂纹的开合情况,假定裂纹梁的刚度是振幅的非线性函数,建立了呼吸裂纹梁的多项式刚度模型;结合等高线裂纹识别理论和方法,提出了一种基于固有频率的呼吸裂纹梁损伤识别方法,算例验证了方法的可行性与有效性。研究表明,该方法的识别精度取决于实验固有频率的精度。  相似文献   

12.
李俊  沈荣瀛  华宏星 《机械强度》2003,25(5):486-489
通过直接求解均匀薄壁梁单元弯扭耦合振动的运动偏微分方程,推导其自由振动时的精确动态传递矩阵。采用考虑翘曲影响的Bernoulli-Euler梁理论,且假定薄壁梁单元的横截面是单对称的。动态传递矩阵可以用于计算薄壁梁集合体的精确固有频率和模态形状。针对两个薄壁梁算例,采用自动Muller法和结合频率扫描法的二分法求解频率特征方程,并讨论翘曲刚度对弯扭耦合:Bernoulli-Euler薄壁梁固有频率的影响。数值结果验证了本文方法的精确性和有效性,并指出翘曲刚度可以显著改变薄壁开口截面梁的固有频率。  相似文献   

13.
An analytical solution to the free vibration of composite beams with two non-overlapping delaminations is presented. The delaminated beam is modeled as seven interconnected Euler-Bernoulli beams using the delaminations as their boundaries. The continuity and the equilibrium conditions are satisfied between adjoining beams. The analysis includes the differential stretching between the delaminated layers and the bending-extension coupling. The results of the present model agree well with the analytical and experimental data reported in the literature. Parametric studies show that the sizes and locations of the delaminations have significant effect on the natural frequencies and mode shapes. These results provide useful information in the study of the free vibration of delaminated composite beams.  相似文献   

14.
An exact dynamic stiffness matrix is established for an elastically connected three-beam system, which is composed of three parallel beams of uniform properties with uniformly distributed-connecting springs among them. The formulation includes the effects of shear deformation and rotary inertia of the beams. The dynamic stiffness matrix is derived by rigorous use of the analytical solutions of the governing differential equations of motion of the three-beam system in free vibration. The use of the dynamic stiffness matrix to study the free vibration characteristics of the three-beam system is demonstrated by applying the Muller root search algorithm. Numerical results for the natural frequencies and mode shapes of the illustrative examples are discussed for 10 interesting boundary conditions and three different stiffness constants of springs.  相似文献   

15.
In this paper, the free vibration of a cantilever Timoshenko beam with a rigid tip mass is analyzed. The mass center of the attached mass need not be coincident with its attachment point to the beam. As a result, the beam can be exposed to both torsional and planar elastic bending deformations. The analysis begins with deriving the governing equations of motion of the system and the corresponding boundary conditions using Hamilton's principle. Next, the derived formulation is transformed into an equivalent dimensionless form. Then, the separation of variables method is utilized to provide the frequency equation of the system. This equation is solved numerically, and the dependency of natural frequencies on various parameters of the tip mass is discussed. Explicit expressions for mode shapes and orthogonality condition are also obtained. Finally, the results obtained by the application of the Timoshenko beam model are compared with those of three other beam models, i.e. Euler–Bernoulli, shear and Rayleigh beam models. In this way, the effects of shear deformation and rotary inertia in the response of the beam are evaluated.  相似文献   

16.
In this paper a mode of free vibrational analysis of multi-cracked rotor is presented. The cracks are assumed to be in the first mode of fracture, i.e. the opening mode. Based on the Timoshenko beam theory, the frequency equation can be constructed by assembling the transfer matrix of each segment of the multi-step and multi-cracked rotor, and then solve the frequencies as well as the corresponding mode shapes of the cracked rotor. The effects of both relative distances along axis and/or orientations of cracks are considered in free vibration analysis. An algorithm and numerical examples are included.  相似文献   

17.
A general analytical model based on shear-deformable beam theory has been developed to study the flexural–torsional coupled vibration and buckling of thin-walled open section composite beams with arbitrary lay-ups. This model accounts for all the structural coupling coming from the material anisotropy. The seven governing differential equations for coupled flexural–torsional–shearing vibration are derived from Hamilton's principle. The resulting coupling is referred to as sixfold coupled vibration. Numerical results are obtained to investigate effects of shear deformation, fiber orientation and axial force on the natural frequencies, corresponding mode shapes as well as load–frequency interaction curves.  相似文献   

18.
There are significant changes in the vibration responses of cracked structures when the crack depth is significant in comparison to the depth of the structure. This fact enables the identification of cracks in structures from their vibration response data. However when the crack is relatively small, it is difficult to identify the presence of the crack by a mere observation of the vibration response data. A new approach for crack detection in beam-like structures is presented and applied to cracked simply supported beams in this paper. The approach is based on finding the difference between two sets of detail coefficients obtained by the use of the stationary wavelet transform (SWT) of two sets of mode shape data of the beam-like structure. These two sets of mode shape data, which constitute two new signal series, are obtained and reconstructed from the modal displacement data of a cracked simply supported beam. They represent the left half and the modified right half of the modal data of the simply supported beam. SWT is a redundant transform that doubles the number of input samples at each iteration. It provides a more accurate estimate of the variances at each scale and facilitates the identification of salient features in a signal, especially for recognising noise or signal rupture. It is well known that the mode shape of a beam containing a small crack is apparently a single smooth curve like that of an uncracked beam. However, the mode shape of the cracked beam actually exhibits a local peak or discontinuity in the region of damage. Therefore, the mode shape ‘signal’ of a cracked beam can be approximately considered as that of the uncracked beam contaminated by ‘noise’, which consists of response noise and the additional response due to the crack. Thus, the modal data can be decomposed by SWT into a smooth curve, called the approximation coefficient, and a detail coefficient. The difference of the detail coefficients of the two new signal series includes crack information that is useful for damage detection. The modal responses of the damaged simply supported beams used are computed using the finite element method. For real cases, mode shape data are affected by experimental noise. Therefore, mode shape data with a normally distributed random noise are also studied. The results show that the proposed method has great potential in crack detection of beam-like structures as it does not require the modal parameters of an uncracked beam as a baseline for crack detection. The effects of crack size, depth and location, and the effects of sampling interval are examined.  相似文献   

19.
A study of the natural vibrations of beam resting on elastic foundation with finite number of transverse open cracks is presented. Frequency equations are derived for beams with different end restraints. Euler-Bernoulli beam on Winkler foundation and Euler-Bernoulli beam on Pasternak foundation are investigated. The cracks are modeled by massless substitute spring. The effects of the crack location, size and its number and the foundation constants, on the natural frequencies of the beam, are investigated.  相似文献   

20.
This paper theoretically and experimentally deals with the vibration characteristics of a piezoelectric disk polarized in the thickness direction and laminated with an elastic disk. Axisymmetric vibration modes include radial and axial motions. Theoretically, in this study, the differential equations of piezoelectric motions were derived in terms of radial and axial displacements and electric potential. The differential equations of elastic motions were expressed in terms of radial and axial displacements. Solving the governing equations and boundary conditions for a coupled structure produced characteristic equations that provided natural frequencies and mode shapes. Experimentally, the natural frequencies were measured using an impedance analyzer and the radial in-plane motions of the fundamental mode were measured using an in-plane laser interferometer. The results of the theoretical analysis were compared with those of a finiteelement analysis and experiments; moreover, the theoretical analysis was verified on the basis of this comparison. It appeared that the natural frequencies of the radial modes of the piezoelectric disk were not affected by the elastic disk; however, those of the thickness modes were reduced by the elastic disk owing to the added mass effect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号