首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 437 毫秒
1.
气体涡轮流量计的改进及实验测量   总被引:5,自引:0,他引:5  
对气体涡轮流量计的主要组件引起的压力损失进行了对比实验测量,比较了整流栅形状、叶轮叶片数和后导流器不同结构对压损的影响程度。结果表明,后导流器相对整流栅和叶轮是产生压力损失的主要因素,采取改进的后导流结构,可以明显降低流量计的压损,同时得到更好的仪表系数值,提高流量计准确度。  相似文献   

2.
刷密封内流动与密封特性的研究   总被引:1,自引:0,他引:1  
应用阻抗力表示刷丝内气体流动的体积力,建立了刷密封内流动的流体动力学模型,将以速度压力为原始参数的偏微分方程转化为涡度输运方程和流函数方程,用有限差分法数值迭代计算,得到了刷密封的流场速度和压力分布,分析了刷密封结构对密封特性的影响。计算实例与试验值误差小于8%。  相似文献   

3.
针对某型号火星熄灭器,采用非定常雷诺时均(RANS)和离散型模型(DPM)对其内部流场和颗粒分离行为进行了数值模拟.计算了初始模型设计流速下的捕集效率和阻力损失;分析了内部速度场、压力场和颗粒运动轨迹特性.针对计算结果,对原火星熄灭器的结构进行了改进.采用相同的计算方法,对改进后的设计方案进行了仿真计算,结果表明提高了火星熄灭器的综合性能.该仿真计算方法能较好地预测火星熄灭器内部两相流的流动特性,对火星熄灭器性能预测和结构改进提供可靠依据.  相似文献   

4.
轴流压气机抽气对下游叶排流场影响的数值研究   总被引:1,自引:0,他引:1  
本文采用三维流动数值模拟方法研究了轴流压气机级问环形槽抽气对下游叶排流场的影响.计算表明:抽气使下游叶排S1和S2流面的速度、压力分布以及叶片表面压力分布发生变化;靠近叶顶区域的流场变化尤为明显;随着抽气量的增大,流场受影响程度增大.  相似文献   

5.
为了准确研究温度与气体流动对某轿车穿孔管消声器声学性能的影响,建立消声器的结构模型与内部流体域模型,并分别划分流体域的计算流体力学(Computational fluid dynamics,CFD)网格与声学有限元网格。利用Fluent软件对消声器内部的温度场与气流速度场进行仿真计算。通过网格映射的方法,将CFD网格上温度、气流速度等数据转移到声学网格中,以CFD计算结果作为声场分析的边界条件,应用声学软件LMS Virtual.Lab Acoustics对消声器内部声场进行数值模拟,得到传递损失曲线。研究结果表明,介质温度升高使传递损失曲线向高频方向移动;存在气体流动时传递损失曲线向低频方向移动,传递损失也有所增加,尤其是在20~200 Hz的低频段内变化较为明显,但总体来看变化幅度不大。  相似文献   

6.
应用流体力学软件FLUENT,对某发动机空滤器内部不可压缩、湍流流场进行三维数值模拟和结构优化。计算中对滤芯采用多孔介质模型,着重分析了空滤器内部的压力场分布、速度场分布;对入口管、出口管和入口管与腔体连接位置进行优化,并分析不同方案下空滤器的流场及其管道的流动阻力损失和空滤器滤芯流体的速度均匀性,再进行CFD仿真计算验证,最终得出了一个流场和阻力损失都合理的模型;优化方案对改善空滤器的阻力损失和滤芯前速度均匀度取得了显著效果。  相似文献   

7.
轴流引风机进气箱不同配置的性能比较   总被引:1,自引:0,他引:1  
对大型电站动叶可调轴流引风机进气箱内部三维流场进行了数值模拟,比较了进气箱几种不同配置时进气箱出口压力损失和速度分布,分析了内部流动损失的原因,计算结果为进气箱结构的优化设计提供了参考.通过与实验结果比较,计算结果验证了数值计算的精度.  相似文献   

8.
采用基于NS方程的CFD方法,开展二维矩形槽单元结构微米间隙气体润滑流量特性研究,讨论Reynolds方程的有效性.数值计算剪切流和压差流工况涡流随槽深的变化规律,对比分析压力和剪切速度对流量特性的影响规律.结果表明,槽深影响涡流效应的强度,在小槽深时,涡流效应对气体润滑的流量特性的影响可以忽略,Reynolds方程适用于分析气体润滑密封性能;随着槽深增加,涡流效应对流量影响较大,Reynolds方程的计算偏差增加.  相似文献   

9.
以TRZ80气体涡轮流量计为研究对象,采用数值模拟与实验测试相结合的方法,提出了前整流器和后导流体的结构优化方案。通过对结构优化前后流量内部流场特征的分析,揭示了流量计结构与性能优化背后确切的流体力学机制。研究结果表明:前整流器和后导流体区域的压降突变与后导流体尾部的涡旋结构和回流现象是影响流量计计量性能的主要机制。优化的流量计结构可以明显减弱压降突变、涡旋结构与回流现象。优化的流量计结构既可以显著降低流量计的压力损失,又可以明显提高流量计的测量精度与稳定性,其压力损失和线性度误差分别降低了约48.58%和32.43%。研究结果有助于为今后开发与量产计量性能更好的气体涡轮流量计提供理论指导和技术支持。  相似文献   

10.
借助计算流体动力学软件Fluent 6.2.16对国产某重型汽车制动管路螺旋段内部气流流动特性进行数值模拟,探究了管内气流的速度和压力分布,并分析了入口压力对管内气流流动特性的影响。研究发现:流场内气流沿螺旋管轴心线作空间螺旋运动;流动过程中,气流的压力和密度降低,速度反之,在弯头区靠近外壁处形成局部高压;提高入口压力可以提高螺旋管的出口压力和气流的质量流量,但管路总压损失增大。  相似文献   

11.
以TM80气体涡轮流量计为研究对象,采用数值模拟与实验测试相结合的方法对其进行结构优化研究。数值结果表明压力梯度骤变和边界层分离的出现主要由流量计的表芯支座和后导流体引起。由此提出了关于表芯支座坡度和后导流体直径的结构优化方法,将表芯支座的坡度设计为15°,将表芯支座侧面的台阶流转变成渐缩流;将后导流体直径缩减为62 mm,将后导流体侧面的台阶流转变成等直径的管道流。数值模拟和实验测试证实,当表芯支座坡度设计为15°、后导流体直径设计为62 mm时,流量计的压力损失显著降低,仪表系数变得更加稳定,线性度误差明显变小,说明该结构优化方法可以明显提升流量计的计量性能。研究结论有助于为今后开发性能更好的气体涡轮流量计提供有力的理论指导和技术支持。  相似文献   

12.
通过数值模拟和实验测试相结合的方法,研究了LWQ80气体涡轮流量计后导流体的结构优化及其计量性能的变化规律。基于流量计内部流场特征及其流动机理的探究,分析得出造成后导流体压损的主要原因是后导流体区域的壁面边界层分离和流体流向偏转。由此提出了缩小分离区和提升导流片导流效果的优化思路,通过延长后导流体的长度和延后导流片的位置,设计了一种改进型的后导流体结构。研究结果表明:后导流体结构经过改进后,气体涡轮流量计的计量性能得到了明显提升。在流量为250 m~3/h时流量计的压损降低了20.5%左右,仪表系数的恒定性显著提高,最大示值误差降低了近2.5倍,且能有效延长流量计的使用寿命。研究结果有助于为气体涡轮流量计的结构与性能优化提供理论指导和技术支持。  相似文献   

13.
Three-dimensional flow field of turbine in torque converter is simulated by numerical calculation in order to improve the performance of torque converter. Calculation model of a torque converter is presented based on the mixing-plane technology. In the calculation of flow field,the 3D N-S equations are separated by finite-volume method and solved by semi-implicit method for pressure-linked equations(SIMPLE). Based on flow field calculation,the flow field of turbine is simulated. The velocity and pressure in the flow field of turbine are analyzed. The external performance of the torque converter is also calculated. Results of flow simulation show that there are secondary flow,off flow and velocity gradient in turbine passage. The validity of numerical simulation is verified by comparing the results of numerical simulation with experiment data.  相似文献   

14.
为了提高井下泥浆涡轮的水力性能,采用NACA翼型+前弯叶片代替圆弧平板直叶片,数值模拟研究改造前后井下泥浆涡轮的内部流场和水力性能。结果表明采用NACA翼型+前弯叶片,能够有效地增加转叶压力面与吸力面的压差,降低转叶出口的能量损失,提高涡轮的输出轴功率和效率,降低涡轮进出口的压降。并通过性能试验,验证改造前后涡轮水力性能的改善效果。  相似文献   

15.
Viscosity effect is one important factor that affects the performance of turbine flowmeter. The fluid dynamics mechanism of the viscosity effect on turbine flowmeter performance is still not fully understood. In this study, the curves of meter factor and linearity error of the turbine flowmeter changing with fluid viscosity variations were obtained from multi-viscosity experiments (the viscosity range covered is 1.0×10–6 m2/s–112×10–6 m2/s). The results indicate that the average meter factor of turbine flowmeter decreases with viscosity increases, while the linearity error increases. Furthermore, Computational Fluid Dynamics (CFD) simulation was carried out to analyze three-dimensional internal flow fields of turbine flowmeter. It was demonstrated that viscosity changes lead to changes of the wake flow behind the upstream flow conditioner blade and the flow velocity profile before fluid entering turbine rotor blade, which affect the distribution of pressure on the rotor blades, so impact the turbine flowmeter performance.  相似文献   

16.
射流流量计的仿真与试验研究   总被引:5,自引:0,他引:5  
以流场仿真为基础,设计射流流量计内部流道结构,研究射流流量计内部流场的速度分布和压力分布,并研究射流附壁诱发流体交替振荡的机理,提出主射流的偏转过程实际上是两个共同作用于主射流的涡流强弱交替的过程。在此基础上,以仿真模型优化射流流量计,通过试验验证射流振荡的效果以及管道流速与流体振动频率之间的特性关系。并设计出计量范围0.55~6.50 m/s(气体介质)、精度等级高于2级的射流传感器,为射流流量计的结构改进和优化设计提供了有效的途径。  相似文献   

17.
为减小轴流排汽缸内部损失,提高排汽缸的气动性能,以杭州汽轮机股份有限公司新开发的轴流排汽缸为研究对象,考虑末级动叶出口径向速度不均匀性对排汽缸的影响,联合末两级整圈低压级组和排缸进行了数值计算。分析了轴流排汽缸内部流动特点,并根据流场对其进行了改型优化。计算结果表明,轴流排汽缸与低压级叶片之间存在相互作用,排汽缸后部出现两个旋流方向相反的涡,并随着气流向下游扩展;通过对轴流排汽缸结构改型,静压恢复系数提高了40.7%,总压损失系数减少了31.4%。通过优化通油管道的截面形状,使静压恢复系数提高了0.13%,总压损失系数减少了2.2%,改善了排汽缸内部流动,显著提高了轴流排汽缸的气动性能。  相似文献   

18.
在天然气的管道运输过程中,提高气体流量测量的精度是提高运输效率、避免安全事故发生的关键技术。利用流体力学仿真(CFD)方法建立组合双弯管及变径管道模型,定量计算修正系数,对双声道超声波流量计结构和安装位置对于管道内气体速度场的影响进行研究。通过仿真得出超声波流量计的最优声道位置,并结合实验验证了仿真结果的可信性。模拟结果表明,双弯管和变径管与超声波流量计的安装位置至少为10D才能保证流体充分流动;通过修正系数随雷诺数的变化情况得出双声道超声波流量计的最优声道位置为距管道截面中心0.25D处。研究结论对于不同性质气体的流量检测同样适用,为工业中气体运输检测精度的提高以及超声波流量计的优化提供了依据。  相似文献   

19.
党芳 《机械工程师》2014,(4):166-167
采用低雷诺数Spalart-Allmaras模型和三维RANS方程求解方法,以某型燃气轮机的低压压气机为研究对象,应用三维流体计算软件NUMECA,完成了该压气机的三维通流数值计算,分析了叶型设计特点、损失分布特点、三维流场特性等。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号