首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
以轧机油膜轴承为研究对象,利用考虑时变和热效应的Reynolds方程建立油水两相流的弹流润滑模型,分析轧机油膜轴承在水介入润滑油后对其润滑的瞬态影响,并讨论不同初始条件下的瞬态润滑特性。结果表明:不同瞬时下,润滑膜的压力膜厚变化明显;润滑油介入水后,随着含水量的增加,润滑油黏度增加,润滑膜的中心压力及中心膜厚增加,最小膜厚先增大后减小,最大温度降低;随着初始转速的增加,最大压力减小,入口区压力、二次压力峰值及膜厚均增加;随着初始轧制力的增加,最大压力增加,入口区压力、二次压力峰值及膜厚均减小。  相似文献   

2.
《机械传动》2017,(1):11-15
以轧机油膜轴承为研究对象,利用考虑热效应的Relnolds方程建立了油水两相弹流润滑模型,对比了3种常用衬套材料对轧机油膜轴承润滑性能的影响,结合轧机油膜轴承的特殊工况讨论了不同含水量、主轴转速和轧制力下的油水两相流体的润滑特性。结果表明:3种衬套材料中,巴氏合金的最大压力及中心压力最小,整体膜厚、中心膜厚及最小膜厚值最大,润滑性能最好,最大温度最大,散热性最好,选用巴氏合金作为衬套材料最为合适;油膜进水后随着含水量的增加,最大压力减小,润滑膜入口区的压力增大,最小膜厚增大,润滑性能提升;随着主轴转速增加,润滑膜最大压力减小,入口区压力增大,最小膜厚增加;随着轧制力的增加,最大压力增大,入口区压力减小,最小膜厚减小。  相似文献   

3.
以轧机油膜轴承为研究对象,建立了油水两相流的弹流润滑模型,分析了润滑液中杂质颗粒对轧机油膜轴承润滑性能的影响。结果表明:存在杂质颗粒时,杂质颗粒接触区压力增大,入口区压力及最大压力变化不大,膜厚减小;随着杂质颗粒半径的增大,入口区压力增大,颗粒接触区压力增大,最大压力减小,膜厚减小;随着杂质颗粒浓度的增加,入口区压力减小,杂质颗粒接触区压力增大,最大压力增大,膜厚减小;随着杂质颗粒流速的增加,入口区压力及最大压力变化不大,而颗粒接触区域压力增大,膜厚减小;随着油水两相流体中含水量的增加,入口区压力减小,最大压力增大,杂质颗粒接触区压力增大,膜厚增大。  相似文献   

4.
研究润滑油中混入水后对轧机油膜轴承热弹流润滑的影响。建立油水两相流体的数学模型,以及轧机油膜轴承热弹流润滑的数学方程,利用多重网格法及多重网格积分法对上述方程进行求解,并分析润滑膜压力、膜厚随含水量、主轴转速、轧制力的变化关系。结果表明:与纯油润滑相比,油水两相流体润滑具有更好的润滑特性,且随着含水量的增加,膜厚增大,承载能力增强;随着主轴转速的增加,膜厚增加,承载能力减小;随着轧制力的增加,膜厚减小,承载能力增强。在油水两相流润滑条件下,热效应对于轧机油膜轴承弹流润滑的影响不能忽略。  相似文献   

5.
研究轧机油膜轴承润滑油混入冷却水形成的油水两相流对轴承等温弹流润滑的影响。建立油水两相流体模型和弹流润滑方程,研究油膜轴承在等温条件下的润滑特性,分析流体润滑膜的压力、膜厚随含水量、滑滚比、轴颈间隙、主轴转速和轧制力的变化关系。结果表明:随着含水量的增加,油水两相流体由油包水流型转化为水包油流型,压力变化不大,膜厚先增加后减小,油包水流型作为润滑剂时润滑性能最优;随着滑滚比和轧机油膜轴承主轴转速的增加,压力减小、膜厚增加,而随着轴颈间隙和外部轧制力的增加,压力增加、膜厚减小。  相似文献   

6.
脂润滑轮毂轴承弹流润滑数值分析   总被引:4,自引:1,他引:3  
基于Ostwald模型建立脂润滑控制方程,运用多重网格法求得等温线接触脂润滑弹性流体动力润滑数值解,得到钢球-沟道的压力分布、油膜形状及最小油膜厚度。针对轿车轮毂轴承的典型应用工况条件,分析工况参数对油膜压力分布和油膜形状的影响。结果表明:脂润滑弹流膜具有与油润滑膜相同的二次压力峰和出口颈缩现象。在轿车轮毂轴承可能的承载条件下,随着载荷的减小,二次压力峰的高度降低,其位置向入口区移动;一定承载条件下,速度增加时,膜厚相应增加,油膜的平行部分缩短,二次压力峰的高度增加,其位置也向入口区移动;一定承载和卷吸速度下,润滑脂流变参数增大时,二次压力峰的高度升高,其位置向入口区移动,膜厚相应增加。  相似文献   

7.
《机械传动》2016,(5):105-109
利用考虑惯性力的Reynolds方程,对水润滑飞龙滑动轴承进行流体润滑数值分析。探讨不同载荷、转速以及表面粗糙度对压力和膜厚的影响,并与不考虑流体惯性力的热弹流解进行对比。结果表明,考虑流体惯性力的影响时,入口区压力增大,压力峰值有所减小,中心膜厚与最小膜厚均增大;随着载荷的增大,压力峰值增大,入口区的压力和膜厚减小;随着转速的增大,压力峰值减小,入口区压力及润滑膜膜厚增大;轴承表面粗糙度使得压力和膜厚均出现了连续波动,压力峰值增大,最小膜厚减小。  相似文献   

8.
以轧机油膜轴承为研究对象,建立油水两相流的弹流润滑模型,利用多重网格法及Fortran程序分析表面波纹度对轧机油膜轴承润滑性能的影响。结果表明:表面波纹度对轧机油膜轴承润滑性能的影响不可忽略,并且是不利的;考虑波纹度后,接触中心区产生明显的波动现象,最大压力增大,最小膜厚减小,润滑性能减弱;随着表面波纹度幅值和波长的增加,接触区波动幅度更加显著;在一定范围内随着油水两相流体中含水量的增加,压力增大,膜厚增加,润滑能力增强。  相似文献   

9.
基于弹性流体动力润滑理论的齿轮设计   总被引:2,自引:0,他引:2  
齿轮传动是重要的传动形式之一,良好润滑是保证齿轮正常传动的关键因素.根据所建立的齿轮弹性流体动力润滑数学模型,进行数值求解,分析载荷参数、润滑油粘度对齿轮弹流润滑性能的影响规律.结果表明随着载荷增加,二次压力峰值减少,位置向入口区偏离;而增大齿轮润滑油的粘度,弹流油膜压力影响不是很大,油膜膜厚是逐渐增加的.最后,根据齿轮形成的最小油膜厚度与齿面粗糙度之比(即膜厚比)分析了齿轮传动的润滑状态.  相似文献   

10.
以柔性轴承为研究对象,基于赫兹接触理论和弹性薄壁圆环理论,建立柔性轴承等温椭圆点接触弹流润滑模型,对滚珠及内外圈滚道的接触区受载荷最大位置处进行弹流润滑数值分析;计算危险点的曲率半径、速度及载荷,分析载荷及速度变化对该位置润滑性能的影响。研究结果表明:套圈变形使得润滑接触区峰值压力增大、膜厚减小;柔性轴承弹流润滑油膜最小膜厚及中心膜厚均随载荷的增大而减小,油膜压力随载荷的增大而变大,表明载荷增大对柔性轴承的承载有一定影响;随转速的增大最小膜厚及中心膜厚均增大,表明在一定范围内,适当提高转速能够改善润滑性能。  相似文献   

11.
径向轴承在运行过程中由于磨损、疲劳裂纹、烧蚀、开有油槽等,可能会出现沟槽缺陷而影响轴承的润滑状态。基于Reynolds方程对表面有沟槽的径向轴承进行理论建模并进行数值模拟,得到表面有凹槽缺陷的径向轴承在润滑过程中油膜厚度、压力的分布,研究不同形状、周向宽度、深度和周向间距的凹槽对轴承润滑状态的影响。研究结果表明,矩形凹槽对轴承润滑的影响最大;凹槽参数对轴承润滑的影响在润滑油入口区和出口区各不相同,在润滑油入口区,随着凹槽周向宽度、周向间距的增加,承载力减小、摩擦因数增大;在润滑油出口区,随着凹槽周向宽度、周向间距的增加,承载力增大、摩擦因数减小;在润滑油出口区,凹槽深度对轴承润滑影响不大,而在润滑油入口区,凹槽深度增加将导致承载力减小、摩擦因数增大。  相似文献   

12.
乳化液润滑轧辊轴承的弹流润滑分析   总被引:1,自引:0,他引:1  
建立乳化液润滑轧辊轴承的数学模型,分别在等温和热条件下对乳化液润滑轧辊轴承的弹流润滑问题进行数值模拟,讨论轧制力和转速对乳化液润滑膜压力和膜厚的影响。结果表明:等温条件下,当轧制力一定时,随着转速的增加第二压力峰增大,而膜厚及最小膜厚都增大;随着轧制力的增大,压力峰值有显著增大,但在入口区压力、膜厚及最小膜厚减小。热条件下,随着轧制力增大,膜厚和最小膜厚逐渐减小,而对压力几乎没有影响;随着转速的增大,膜厚和最小膜厚逐渐增大,压力逐渐减小,第二压力峰也逐渐降低甚至消失。  相似文献   

13.
为了寻求一种能够快速建立高速小型复合陶瓷球轴承弹流润滑数学模型的数值计算方法,基于Reynolds方程的情况下运用Fortran语言在Visual Studio中进行编译,通过给定初始压力分布,运用迭代法求得弹流润滑完全数值解,并获取最终的压力和膜厚值。结果表明:转速、载荷以及润滑油粘度会对轴承的接触区压力、膜厚产生影响,其中随着转速的增加,最小膜厚增加,最大压力减小;随着载荷的增加,最小膜厚减小,最大压力增大;而随着润滑油粘度的增加,膜厚增加,最大压力减小。通过与传统理论计算结果的对比,结果具有较好的一致性,研究结果对高速深沟陶瓷球轴承运用具有指导意义。  相似文献   

14.
以某隧道工程实际工况条件为例,建立盾构机主驱动轴承载荷分布计算模型和等温线接触弹流润滑模型,通过数值分析得到极限工况和占比99.9%的工况条件下盾构机主驱动轴承的油膜厚度及油膜压力分布;依据实际工况条件分析不同工况对轴承油膜厚度、油膜压力的影响规律,以及滚子所处位置不同时滚子负载与油膜压力和膜厚之间的变化关系。结果表明:不同工况下主轴承油膜厚度、油膜压力分布规律相似,均出现二次峰值;同一工况下,随着滚子于主轴承所处位置不同,油膜压力及膜厚最值随滚子负载的增大而减小;同一位置处二者最值随主轴承受力的增大而减小。  相似文献   

15.
采用热弹流润滑模型对比分析PTFE瓦和巴氏合金瓦推力轴承的润滑特性。计算结果表明,采用PTFE瓦后,推力轴承中油膜的最高压力得到有效降低,油膜压力分布更加均匀,推力轴承中润滑油膜温升会提高;推力瓦瓦体的温度会大幅度下降,其整体热变形也会相应减小;适当加工推力瓦进、出油边的楔形面,可以有效提高最小润滑油膜厚度;油膜入口区域的回流现象将减弱甚至可能消失;必需润滑油量得以降低,轴承的润滑损耗减小。  相似文献   

16.
椭圆接触乏油弹流润滑影响因素分析   总被引:1,自引:0,他引:1  
采用多重网格法,研究了载荷、速度和材料参数对椭圆接触乏油弹性流体动压润滑油膜厚度和压力分布的影响.结果表明:载荷增大,油膜厚度减小,最小油膜厚度向出口方向移动,颈缩现象逐渐变强,二次压力峰特点凸现,其位置向出口区移动;速度增大,油膜厚度增大,颈缩位置向膜厚中心移动,油膜在入口区就已开始收缩,压力分布曲线的二次压力峰变得更加尖锐,并逐渐向入口区移动;材料参数增大,油膜厚度和压力均增大,油膜颈缩位置向出口方向移动,二次压力峰位置没有变化.  相似文献   

17.
建立水润滑塑料合金轴承的数学模型,对水润滑条件下塑料合金轴承的弹流润滑问题进行数值模拟,讨论转速和载荷对水润滑膜压力和膜厚的影响。结果表明:在水润滑条件下,转速对水润滑膜的压力影响不明显,而膜厚及最小膜厚随转速的增大而明显增大;随载荷的增大,压力峰值有明显增大,而在入口区压力随载荷增大而减小,膜厚及最小膜厚随载荷增大而减小。  相似文献   

18.
摆线针轮行星传动啮合过程中供油量变化影响传动效率和接触疲劳特性。引入部分油膜厚度比例,以入口油膜厚度来表征乏油程度,建立摆线针轮有限长线接触乏油润滑数值模型,研究在齿宽方向上入口油膜厚度不均匀分布对压力和膜厚分布的影响。结果表明:乏油条件下,随着入口供油量增加,入口油膜厚度的不均匀分布对齿宽方向上的压力和膜厚分布的影响减小;随着速度的增加,齿宽方向压力和膜厚分布受入口油膜厚度不均匀分布的影响增加;随着载荷的增加,齿宽方向压力和膜厚分布受入口油膜厚度不均匀分布的影响程度减小。  相似文献   

19.
利用考虑惯性力的Reynolds方程,对乳化液润滑条件下复合塑料轴承的弹流润滑问题进行了数值模拟,讨论了载荷、转速和轴承轴径大小对乳化液膜压力和膜厚的影响.结果表明:在乳化液润滑条件下,惯性力对乳化液膜压力的影响很小,而对乳化液膜厚度的影响较大;随着载荷的增大,压力峰值有明显增大,而在入口区压力随载荷增大而减小,膜厚以及最小膜厚随载荷减小而明显增大;转速和轴承轴径大小对乳化液膜压力的影响不明显,而膜厚以及最小膜厚随转速增大而明显增大,随轴承轴径的增大而减小.  相似文献   

20.
为探究冲击载荷对滚滑轴承润滑性能的影响,设计一种轮子扁疤系统,以模拟轴承受到的循环冲击载荷,利用数值分析法对比研究冲击载荷作用下滚滑轴承的润滑特性及不同工况对滚滑轴承滚子润滑的影响。结果表明:滚滑轴承的滚子润滑受冲击载荷的影响小于滚动轴承;冲击载荷发生前,滚滑轴承滚子油膜有高于油膜中心压力的第二峰值压力,油膜出口区有明显缩颈现象,随冲击载荷的增大,第二峰值压力虽会逐渐减小,但不会消失;冲击载荷频率越大,最小油膜厚度越大,冲击载荷幅值越大,滚子油膜厚度越薄;滚子油膜厚度随润滑油黏度、转速的增加而增加。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号