首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We show a new atomic force microscopy technique for obtaining high‐resolution topographic images of large bio‐samples. To obtain high‐resolution topographic images for the samples, we fabricated a long polymeric tip with a small protrusion using two‐photon adsorbed photo‐polymerization techniques. The obtained tip length was over 50 µm, and the tip was used directly to visualize COS‐1 and 293 cells. Compared with commercial tips, the long tip made it easier to obtain topographic images of the large cells. In the magnified topographic images, the sub‐100‐nm resolution was confirmed with the long tips. This long probe tip is expected to broaden large sample‐related studies and applications in the future.  相似文献   

2.
The length of the molten zone determines the length of pulled optical fibre tips. Tips produced by laser or filament heating are rather lengthy. By using a foil heater the taper length can be shortened and cone angles in the order of 30° can reproducibly be obtained. For varying the drawing force there is an optimum temperature range where the taper shape is monotonic for the whole tip. The tip end diameter is well below 100 nm for optimized pulling conditions.  相似文献   

3.
麻花钻后刀面螺旋锥面刃磨法的研究   总被引:1,自引:0,他引:1  
傅蔡安  时林  郑小虎 《工具技术》2007,41(12):57-61
在分析和研究锥面刃磨法和变导程螺旋面刃磨法的基础上,提出了麻花钻后刀面螺旋锥面刃磨法并构建了相关的数学模型。采用螺旋锥面刃磨法不仅能得到麻花钻直线主刀刃和更理想的后角值分布,而且解决了采用变导程螺旋面刃磨法钻芯强度较弱以及采用锥面刃磨法存在的后刀面"翘尾"现象。  相似文献   

4.
Scanning (atomic) force microscopy (SFM) permits high-resolution imaging of a biological specimen in physiological solutions. Untreated extracellular haemoglobin molecules of the common North American earthworm, Lumbricus terrestris, were imaged in NH4Ac solution using calibrated SFM. Individual molecules and their top and side views were clearly identified and were comparable with the images of the same molecule obtained by scanning transmission electron microscopy (STEM). A central depression, the presumed mouth of the hole, was detected. We analysed 75 individual molecules for their lateral dimensions. Compression varied for different molecules, presumably because of the variation of the interaction between the SFM tip and the protein molecule. Two effective heights which correspond to the heights of the points of the haemoglobin molecules first and last touched by the tip, h1 and h2, respectively, were measured for each protein and ranged between 1.58 and 16.2 nm for h1 and 1.23 and 13.6 nm for h2. The apparent diameter was measured and ranged from 44.9 to 86.6 nm (63.2±10.5 nm, n =75), which is about twice the diameter of the molecule reported by STEM for the top view orientation. The higher the measured effective heights, the worse was the tip convolution effect. In order to determine the tip parameters (semivertical angle, curvature of radius and the cut-off height) and to calibrate images of earthworm haemoglobin molecules, spherical gold particles were scanned as standards. The tip sectional radii at distances of h1 and h2 above the tip apex were subtracted from the apparent diameter of the protein. The calibrated lateral dimension was 29.1 ±3.85 nm, which is close to the reported scanning transmission electron microscopy data 30.0 ±0.8 nm. The results presented here demonstrate that the calibration approach of imaging gold particles is practical and relatively accurate. Calibrated SFM imaging can be applied to the study of other biomacromolecules.  相似文献   

5.
Huang JC  Chen CM 《Scanning》2012,34(3):191-199
This study proposes an innovative atomic force microscopy (AFM) based nanoscale electrical discharge machining (AFM-based nanoEDM) system which combines an AFM with a self-produced metallic probe and a high-voltage generator to create an atmospheric environment AFM-based nanoEDM system and a deionized water (DI water) environment AFM-based nanoEDM system. This study combines wire-cut processing and electrochemical tip sharpening techniques on a 40-μm thick stainless steel sheet to produce a high conductive AFM probes, the production can withstand high voltage and large current. The tip radius of these probes is approximately 40 nm. A probe test was executed on the AFM using probes to obtain nanoscales morphology of Si wafer surface. The silicon wafer was as a specimen to carry out AFM-base nanoEDM process in atmospheric and DI water environments by AFM-based nanoEDM system. After experiments, the results show that the atmospheric and DI water environment AFM-based nanoEDM systems operate smoothly. From experimental results, it can be found that the electric discharge depth of the silicon wafer at atmospheric environments is a mere 14.54 nm. In a DI water environment, the depth of electric discharge of the silicon wafer can reach 25.4 nm. This indicates that the EDM ability of DI water environment AFM-based nanoEDM system is higher than that of atmospheric environment AFM-based nanoEDM system. After multiple nanoEDM process, the tips become blunt. After applying electrochemical tip sharpening techniques, the tip radius can return to approximately 40 nm. Therefore, AFM probes produced in this study can be reused.  相似文献   

6.
Haefliger D  Stemmer A 《Ultramicroscopy》2004,100(3-4):457-464
An optical near-field at the tip of an atomic force microscope probe is utilised to pattern aluminium thin films on glass substrates by photo-thermally induced corrosion in water. Aluminium forms a thin passivating oxide layer when immersed into neutral water at room temperature. Owing to the high energy density of the near-field, the metal below the probe tip can be heated to 100°C due to absorption of the light, which then provokes breakdown of the passivation and metal corrosion. The localised near-field is generated by tip-induced enhancement of an evanescent field originating from a laser beam, that is totally internally reflected at the glass–aluminium–water interface. The process is governed by surface plasmons excited in the aluminium film by the evanescent waves and the field enhancement of the probe tip. Holes of 40 nm diameter and lines below 100 nm width have been written into a 20-nm-thick aluminium film. Applications of the scanning probe lithography process may include the one-step fabrication of point contacts or contact masks for near-field optical lithography and reactive ion etching.  相似文献   

7.
The sharpness of atomic force microscope (AFM) tips is essential for acquiring high quality AFM images. However, AFM tips would easily get contaminated during scanning and storage at ambient condition, which influences image resolution and causes image distortion. Replacing the probe frequently is a solution, but uneconomical. To solve this problem, several tip cleaning methods have been proposed but there is space for further improvement. Therefore, this article developed a method of tip cleaning by using a one‐dimensional grating (600 lines/mm) as a micro‐washboard to “wash” contaminated tips. We demonstrate that the contaminants can be scrubbed away by rapidly scanning such micro‐washboard against the tip in the aids of Z‐dithering (10–20 Hz) exerted on the washboard. This method is highly efficient and proved to be superior to traditional ones. Experiments show that AFM images acquired with “washed” tips have higher resolution and less distortion compared with images acquired using contaminated tips, even comparable to those scanned by new ones. Microsc. Res. Tech. 76:1131–1134, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

8.
The enhancement in electric field strength in the vicinity of a metal tip, through the excitation of plasma modes in the tip, is investigated using the finite difference time domain method; such tip enhancement has significant potential for application in scanning near-field Raman microscopy. To represent an experimentally realistic geometry the near-field probe is described by a conical metal tip with a spherical apex, with radii 20 nm and 200 nm considered, in close proximity to a glass substrate. Illumination through the substrate is considered, both at normal incidence and close to the critical angle, with the polarization in the plane of incidence. By modelling the frequency dependent dielectric response of the metal tip we are able to highlight the dependence on the scattering geometry of the nature of the electromagnetic excitations in the tip. In particular, the strongest electric field enhancement with the greatest confinement occurs for the excitation of modes localized at the tip apex, excited only for off-normal incidence. Bulk modes excited in the tip also produce enhancement, although over a larger area and with significantly less enhancement than that of the localized modes; however, the excitation of bulk modes is independent of the angle of incidence.  相似文献   

9.
崔岩 《光学精密工程》2009,17(8):0-1869
为制备高纵横比的纳米硅尖,研究了掩模的偏转方向对硅尖形状的影响。设计了硅尖制备的工艺流程,采用KOH溶液湿法各向异性腐蚀制备硅尖,将实验和{411}晶面模型相结合,分析了硅尖的成型机理,讨论了掩模偏转方向对硅尖形状的影响,得到制备高纵横比纳米硅尖的工艺参数。实验结果表明:硅尖侧壁是由与(100)面夹角为76.37°的{411}晶面组成;利用正方形掩模的偏转,可以制备出八面体和四面体的硅尖。当正方形掩模边缘沿<110>晶向时,在78℃、浓度40%的KOH溶液中腐蚀的硅尖,经980℃氧化削尖,可以得纵横比大于2的八面体纳米硅尖阵列。  相似文献   

10.
This paper aims to improve bond surface smoothness, sharpening quality and efficiency as well as control grain protrusion height. Systematic research was performed on pulsed fiber laser sharpening of a coarse-grained bronze-bonded diamond grinding wheel. The results show that bond surface smoothness is related to the laser spot overlap ratio Uc and the laser scan track overlap ratio Ul. In the range 10–70%, an increase in Uc and Ul improved the sharpened bond surface smoothness. Sharpening quality and efficiency are both related to laser power density Ip. In the range 2.115–6.344 × 107 W cm−2, an increase in Ip gradually improved sharpening efficiency, but the sharpening quality trend initially improved followed by a subsequent decline. The grain protrusion height is related to the laser scan cycles N. An excessively small N will result in an insufficient chip space such that the grinding wheel is likely blocked. Grains will likely fall off due to an insufficient holding force if N is excessively large. Compared with silicon carbide grinding wheel sharpening, a pulsed laser-sharpened grinding wheel exhibits less surface grain fall-off, better grain height uniformity, more chip space around the grain and superior grinding wheel surface topography.  相似文献   

11.
麻花钻后刀面建模方法的优化   总被引:1,自引:0,他引:1  
在分析和研究麻花钻锥面刃磨法、变导程螺旋面刃磨法及螺旋锥面刃磨法的基础上,提出了横刃及圆柱螺旋线扫掠法,并构建了其数学模型。该方法预先设计横刃,以横刃及螺旋线复合扫掠的方法构建主后刀面。采用该方法得到了麻花钻直线主刀刃和理想的横刃及后角值分布;解决了采用变导程螺旋面刃磨法钻芯强度较弱以及采用锥面刃磨法存在的主后刀面"翘尾"现象;解决了两主后刀面磨削自然形成横刃形状的可控性。  相似文献   

12.
SUMMARY

A design is presented for a polarographic cell that minimizes the iR error in controlled-potential polarography of solutions possessing a high specific resistance. A sharpened Smoler 90° vertical orifice DME is used. With this electrode, the mercury drop grows principally in the downward direction. This and the fact that the end of the capillary is sharpened to a point allows the positioning of a micro reference electrode probe directly above the mercury drop and to within 0.1 of the maximum radius of the mercury drop from the mercury surface during the entire drop life time. With this apparatus it is also possible to observe the iR error as a function of the distance between the reference electrode tip and the mercury drop surface. The effect of reference electrode position on iR error introduced is illustrated by a series of uranium and cadmium polarograms in high specific resistance media. Controlled-potential polarograms with little distortion attributable to iR error can be obtained with this cell design in solutions with specific resistances up to at least 22,000 Ω-cm.  相似文献   

13.
A simple, one‐step process to fabricate high‐quality apertures for scanning near‐field optical microscope probes based on aluminium‐coated silicon nitride cantilevers is presented. A thin evanescent optical field at a glass–water interface was used to heat the aluminium at the tip apex due to light absorption. The heat induced a breakdown of the passivating oxide layer and local corrosion of the metal, which selectively exposed the front‐most part of the probe tip from the aluminium. Apertures with a protruding silicon nitride tip up to 72 nm in height were fabricated. The height of the protrusion was controlled by the extent of the evanescent field, whereas the diameter depended on the geometry of the probe substrate. The corrosion process proved to be self‐terminating, yielding highly reproducible tip heights. Near‐field optical resolution in a transmission mode of 85 nm was demonstrated.  相似文献   

14.
We have imaged fluorescent erbium‐doped fluoride glass particles by apertureless scanning near‐field optical microscopy. The optical excitation has been performed at λ = 780 nm whereas fluorescence emission has been collected around λ = 550 nm. This process, called upconversion by energy transfer, involves two erbium ions and is not linear. Besides an improvement of the lateral resolution, we have observed on some particles that the fluorescence is not homogeneously distributed, but is rather localized in some zones brighter than others. By making tip approach curves, we have also observed that the amount of fluorescence intensity scattered by the tip is increasing when the tip is approaching the sample surface.  相似文献   

15.
A field ion microscope was used to examine the stability of the atomic arrangement at tip apexes. Although a single W atom at the top layer of a [111]-orientated tip apex protrudes from the underneath layer by only 0·91 Å, the present study suggests that the (111)-orientated W tip is the most desirable tip for scanning tunnelling microscopes because a large activation energy for surface diffusion on the (111) plane immobilizes the apex atom while the tip scans over a specimen surface and the tip apex can be resharpened by simply heating the tip.  相似文献   

16.
Using fluorescent dyes to trigger the polymerization of a commercial polyurethane resin allows a rapid fabrication of micrometer and submicrometer sized fluorescent structures by one‐photon absorption. Here, we show that standard He–Ne lasers emitting at 632.8 nm can be used to start the photopolymerization and that very low laser power is required. This procedure allows the fabrication of fiduciary fluorescent references on standard glass coverslips, mica sheets, or gold‐coated coverslips for laser scanning or standard fluorescent microscopy. The biocompatibility of the polymerized resin with cells in culture was tested by growing Xenopus melanophores and a standard laser scanning microscope was used to demonstrate that it is possible to use equipment readily available in several laboratories. We show that fluorescent structure with less than 10 nm in height may be used as references in fluorescence microscopy allowing a smooth environment for cell growth. Different dyes were tested and the conditions for one‐photon polymerization were outlined. Microsc. Res. Tech. 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

17.
Using a local anodic‐oxidation method with a probe tip of a scanning near‐field optical microscope (SNOM) as the electrode, we have fabricated an oxide core with subwavelength dimensions on metal. The propagation of the surface plasmon polariton (SPP), which is excited at the interface between the oxide core and the metal clad, has been investigated using the same SNOM. Altering the wavelength of input light from 532 nm to 830 nm, the propagation length of the SPP extends from 2 µm to 6 µm. We carried out a simulation of the SPP propagation, and obtained a similar wavelength dependence.  相似文献   

18.
The study aimed to evaluate the effect of different output powers of Er:YAG laser on microtensile bonding strength of indirect composite to resin cements.36 indirect composite blocks (GC Gradia DA2, Japan) size 15 × 10 × 10 mm3 were constructed, and divided into 12 groups, as follows:G1: control group (no treatment); Groups G2 to G6: treated with Er:YAG laser (2,940 nm) in noncontact mode, frequency 20 Hz, pulse duration 470 µs, with output power ranging from 2W to 6W; Groups G7 sandblasting, Groups 8 to G12: as Groups G2 to G 6 with preparatory sandblasting. One specimen from each group was analyzed by SEM; each specimen was fixed to a specialized metal jig using cyanoacrylate (Mitreapel, Beta Kimya San. Ve TIC, Iran) and debonded under tension with a universal testing machine (Zwick, Germany) at a crosshead speed of 0.5 mm min?1. Sandblasting and laser can improve bond strength above an energy level of 150 mJ. SEM evaluation of laser‐treated specimens showed irregularities and deep undercuts. T test analysis showed no significant difference between sandblasted and non‐sandblasted group, with laser output power of 0, 100, or 150 mJ (P = 0.666, P = 0.875, and P = 0.069); in the specimens irradiated with energy output of 200, 250, or 300 mJ, sandblasted specimens showed higher bond strength than non‐sandblasted ones. The results demonstrate that, in composite resin irradiated with laser at energy output of 200–300 mJ, sandblasting might be a suitable procedure to enhance bond strength of resin cement. Microsc. Res. Tech. 79:328–333, 2016. © 2016 Wiley Periodicals, Inc.  相似文献   

19.
The aim of this study was to evaluate the sealing ability and marginal adaptation of calcium silicate‐based cements (CSCs) in root‐end cavities prepared by ultrasonic and laser tips. A total of 72 extracted human maxillary incisor teeth were randomly divided as 60 teeth in experimental groups and 6 teeth each for positive and negative control groups. Specimens in experimental groups were obturated, their root‐end resections were performed and randomly divided into six groups (n = 10) as follows: G1: Ultrasonic retrotip + MTA, G2: Ultrasonic retrotip + Calcium Enriched Mixture (CEM), G3: Ultrasonic retrotip + Biodentine, G4: Er:YAG laser tip + MTA, G5: Er:YAG laser tip + CEM, G6: Er:YAG laser tip + Biodentine. The sealing ability was measured by fluid transport method. Six specimens from each experimental group were randomly selected to analyze marginal adaptation and prepared for scanning electron microscopy (SEM) analysis. Micrographs were scored and also analyzed using Image J software. Data were analyzed with; two‐way ANOVA, Bonferroni, Kruskall–Wallis, Mann–Whitney‐U, Siegel & Castellan, and Spearman correlation coefficient tests. No significant difference was found between materials regarding the sealing ability and marginal adaptation (p > 0.05). Significantly greater fluid movement and poor marginal adaptation were seen for materials placed in cavities prepared by laser tips (p < 0.05). Positive correlation was found between the results of scoring and Image J analysis of SEM images (r = 0.596, p < 0.001). Fluid transport method and SEM analysis gave similar results suggesting the use of ultrasonic‐retrotips for preparing root‐end cavities which are going to be filled with one of these CSCs.  相似文献   

20.
The protein organization within focal adhesions has been studied by state‐of‐the‐art super resolution methods because of its thin structure, well below diffraction limit. However, to achieve high axial resolution, most of the current approaches rely on either sophisticated optics or diligent sample preparation, limiting their application. In this report we present a phasor‐based method that can be applied to fluorescent samples to determine the precise axial position of proteins using a conventional confocal microscope. We demonstrate that with about 4,000 photon counts collected along a z‐scan, axial localization precision close to 10 nm is achievable. We show that, with within 10 nm, the axial location of paxillin, FAK, and talin is similar at focal adhesion sites, while F‐actin shows a sharp increase in height towards the cell center. We further demonstrated the live imaging capability of this method. With the advantage of simple data acquisition and no special instrument requirement, this approach could have wide dissemination and application potentials. Microsc. Res. Tech., 76:1070–1078, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号