首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
曲线钢轨初始波磨形成的机理分析   总被引:3,自引:0,他引:3  
利用数值方法分析钢轨离散支撑引发曲线钢轨初始波浪形磨损形成的机理.建立车辆轨道耦合动力学模型、轮轨滚动接触理论模型和轮轨界面材料摩擦磨损模型为一体的钢轨磨耗型波浪形磨损计算模型.考虑半个车辆模型和有限计算长度的轨道模型,利用Hertz非线性接触弹簧和沈志云-Hydrick-Elkins非线性蠕滑理论耦合车辆和轨道的计算模型来计算轮轨的法向载荷和切向载荷.通过车辆过曲线动力学分析,确定轮轨的瞬时接触位置、法向载荷、蠕滑率等.根据修改的Kalker三维滚动接触理论计算轮轨滚动接触力学行为,再利用轮轨材料摩擦磨损模型计算钢轨的磨损量.对曲线两端的缓和曲线和圆曲线的初始波磨形成过程作详细分析,并对波动频率也作了调查.数值结果显示,同一个转向架4个车轮引起的磨损波长和波深是不同的;不同曲线位置初始波磨的波深和波长也有区别;波磨的频率和轮轨接触振动密切相关;波磨的频率不仅包含轨枕的通过频率,也包含轨道被激发的更高振动频率.  相似文献   

2.
钢轨短波长波磨处的高速滚动接触分析   总被引:1,自引:0,他引:1  
通过对某高速线路上出现的钢轨波磨的现场测量,采用显式有限元法建立三维高速瞬态滚动接触模型,分析轮轨在波磨处的高速(300 km/h)滚动行为。利用实体单元划分具有真实几何的轮对与钢轨,轮轨间的法、切向瞬态滚动接触问题由面面接触算法于时域内求解,同时考虑车辆和轨道系统的主要部件。车轮在光滑钢轨上的滚动结果显示,该模型可以建立起轮轨间稳态滚动接触,为研究表面不平顺处的滚动接触奠定了基础。分析某高速线路的钢轨波磨的波长和波深对轮轨瞬态滚动接触的影响,讨论不同牵引系数条件下波磨处的瞬态滚动接触行为。结果表明:波磨引起的轮轨法、切向接触力均在波长为80 mm(现场观测到的主波长)时达到最大,即数值重现了上述高速线路的波磨主波长;接触力随波深的增大单调递增,但增长率逐渐减少;牵引系数越大,钢轨发生不均匀磨损或塑性变形的可能性越大,即波磨产生的可能性越大。  相似文献   

3.
概述了钢轨波磨研究现状及现有钢轨波磨计算模型。基于刚柔耦合的车辆轨道耦合动力学模型、改进的轮轨非赫兹滚动接触力学模型、钢轨材料摩擦磨损模型和磨耗叠加计算模型,建立整车-无砟轨道钢轨波磨计算模型。其中刚柔耦合的车辆轨道耦合动力学模型可以同时考虑钢轨、轨道板柔性以及钢轨周期离散支撑条件等因素;改进的三维非赫兹接触模型考虑不均匀磨损对轮轨接触的影响;材料摩擦磨损模型考虑自旋对磨耗的贡献。钢轨波磨计算模型考虑了轮轨之间的动力作用对波磨形成和发展的影响,以及波磨导致接触表面改变后其对轮轨接触及动力学的反馈作用。该模型可以模拟整车八个车轮和钢轨相互作用所形成的波磨。利用该模型再现了现场残余波磨的初期演化情况,该项研究可为钢轨波磨的减缓和治理提供理论基础和技术手段。  相似文献   

4.
山地城市地铁平纵曲线交叠区段钢轨波磨频发,钢轨打磨是一种常用的抑制钢轨波磨发展的手段,而确定钢轨波磨的打磨限值是关键。根据现场调研构建山地城市地铁平纵曲线交叠区段的车辆-轨道系统动力学模型,采用动力学分析研究波磨特性对轮轨动态响应的影响规律,从车辆运行安全性的角度提出钢轨波磨的安全限值;构建波长为50 mm典型波磨区段的轮轨系统有限元模型,采用瞬时动态分析研究轮轨摩擦耦合振动特性,从钢轨波磨发展趋势的角度提出钢轨波磨的打磨限值。动力学分析结果表明,山地城市地铁平纵曲线交叠区段钢轨波磨波长为30、40、50、60、70 mm时的波深安全限值分别为0.03、0.04、0.05、0.08、0.15 mm。轮轨摩擦耦合振动分析结果表明,轮轨系统摩擦耦合振动随着波深的增大而增大,控制波深打磨限值在0.02 mm以下能有效抑制轮轨摩擦耦合振动并延缓波磨发展。  相似文献   

5.
为研究高速列车谐波磨耗车轮滚动接触疲劳特性,建立谐波磨耗车轮高速轮轨滚动接触数值分析模型。该模型考虑了车辆系统的一、二系非线性悬挂力、轮轨非线性接触几何关系并考虑了钢轨振动及轮轨间的激励响应对接触蠕滑的影响。以CRH2型高速列车为研究对象,运用多体动力学软件UM参数化建立其动力学数值模型;对实测统计数据中最常见的1阶、6阶和11阶谐波磨耗以及波深0.1 mm和0.3 mm下车轮的蠕滑率/力进行分析;以不同阶数、波深车轮的蠕滑特性参数为疲劳模型的输入参数,研究谐波磨耗车轮的疲劳特性。结果表明:无谐波磨耗车轮处于弹性安定状态,1阶波深0.1 mm和0.3 mm车轮和6、11阶波深0.1 mm车轮都处于棘轮效应状态,6、11阶波深0.3mm处于塑性安定状态;低阶小波深车轮以疲劳为主,高阶大波深车轮以磨耗为主;与阶数相比,滚动接触疲劳、磨耗对波深的变化更为敏感,波深的增加会促进车轮蠕滑力/率的进一步快速增大,从而车轮的切向力迅速增大。  相似文献   

6.
联合应用隐式-显式有限元及边界元方法,分析地铁线路中几种典型钢轨波磨对车轮声辐射的影响。采用Ansys/LSdyna建立有钢轨波磨存在的三维轮轨瞬态滚动接触模型,获得波磨激励下的轮轨接触力。将该轮轨力输入到有限元/边界元振动声辐射模型,进行波磨激励下车轮声辐射分析。结果表明,该模型能够反映波磨对轮轨作用力非线性的影响;钢轨波磨增大了轮轨间作用力,波磨波长越短,波深越深,对轮轨力的影响越大。对于直型辐板车轮,当钢轨波长较长或波深较小时,车轮声辐射主要由径向模态振动声辐射贡献,当钢轨波长较短或波深较大时,车轮振动声辐射在波磨激励频率处贡献较大。  相似文献   

7.
基于轮轨法向间隙的车轮踏面优化方法   总被引:10,自引:0,他引:10  
为了寻求基于目标的铁路车辆车轮踏面数值优化技术,开发一种考虑轮轨法向间隙参数的车轮踏面优化方法。利用该方法优化我国高速列车车轮LMa型面。并发现优化后的LMa车轮和CHN60钢轨滚动接触接触时,轮轨界面之间具有较好的“共形”特性,这样能有效降低轮轨接触应力以达到降低滚动接触疲劳目的。并用车辆轨道耦合动力学理论分析优化的车轮型面对车辆动态特性的影响。数值结果表明,在不降低车辆动力学性能的情况下,此方法可以有效改善轮轨接触点对分布,降低轮轨接触应力。  相似文献   

8.
基于轮轨垂向动力学、轮轨滚动接触理论以及磨耗理论建立高速铁路无砟轨道钢轨波磨发展的理论计算模型,并发展出相应的数值仿真方法。其中轮轨垂向动力学模型包含高速车辆和高速铁路无砟轨道模型;采用Hertz接触理论和Carter二维轮轨接触理论计算轮轨切向力;利用摩擦功磨耗模型计算钢轨表面的磨耗。利用数值仿真再现了高速铁路钢轨波磨的演化过程,以此来研究车辆一系悬挂刚度以及悬挂阻尼,轨道扣件刚度、扣件阻尼以及钢轨硬度对高速铁路钢轨波磨发展的影响规律。结果表明:文中模拟所得的钢轨波磨波长特征与高速铁路上的波磨调查结果相符;较小的车辆一系悬挂刚度,适当的一系悬挂阻尼和扣件刚度,以及较大的扣件阻尼和钢轨硬度有利于抑制高速铁路钢轨波磨的发展。  相似文献   

9.
基于我国某地铁钢轨波磨的调研,采用显式有限元法建立了考虑车轮、车轴和钢轨连续体振动以及车辆、轨道高频结构振动的全轮对三维瞬态轮轨滚动接触模型,在时域内数值再现了轮对通过单侧钢轨波磨轨道段时的滚动接触行为,系统分析了单侧钢轨波磨对两侧轮轨瞬态响应的影响。相比于作者之前开发的半轮对滚动接触模型,该模型可将轮轨横向蠕滑和大自旋考虑在内。结果表明:地铁运行速度越高,波磨侧的不均匀磨损现象越严重;计算的五个速度中,波磨造成的瞬态激励在30和120 km/h时更易传递至无波磨侧,进而促进无波磨侧钢轨萌生波磨;轮对越是向波磨侧横移,波磨侧不均匀磨损越严重,但无波磨侧不均匀磨损逐渐降低,即相较于直线段,横移更大的曲线段上的外侧钢轨波磨更不易引发另一侧钢轨的波磨。  相似文献   

10.
铁路曲线钢轨初始波磨演化分析   总被引:1,自引:0,他引:1  
建立了车辆/轨道横向垂向耦合动力学、轮轨滚动接触力学和钢轨材料摩擦磨损模型为一体的钢轨波浪形磨损计算模型,发展了相应的数值方法。利用该方法分析曲线钢轨接触面上具有不同固定波长的初始波磨随着车辆通过次数增加的演化规律。计算同一个转向架的4个车轮反复作用下初始波磨波深、频率和相位的变化情况。数值结果表明,随着车辆通过次数增加,具有任何固定波长的钢轨初始波磨逐渐衰减,且同一个转向架前轮对作用下初始波磨衰减的速度远大于后轮对作用下初始波磨衰减的速度;前轮对作用下的演化波磨的相位有移动的趋势;轮对反复作用下单一波长的初始波磨逐渐演化具有两个波长的新的波磨;初始波磨的波长越短,在车辆通过次数增加时,衰减得越快。  相似文献   

11.
牵引/制动载荷和轮轨黏着条件对轮轨系统动态相互作用影响显著,尤其是轮轨切向作用。基于车辆-轨道耦合动力学理论,建立地铁车辆-板式轨道空间耦合动力学模型;由于轮轨接触斑形状以及接触应力分布实际上呈明显的非赫兹特性,因此建立考虑轮对摇头角的轮轨非赫兹法向接触模型以及相应的轮轨非赫兹蠕滑模型,并用于耦合动力学的轮轨动态相互作用计算中。基于所建立的动力学仿真模型,系统分析牵引/制动载荷以及复杂的轮轨界面黏着条件对轮轨系统动态相互作用的影响。结果表明,牵引/制动载荷和轮轨黏着条件对轮轨切向接触应力及黏-滑区域分布影响显著,在干燥接触条件下,随着牵引/制动载荷的增大轮轨切向应力幅值增大,黏着区域减小,而当牵引/制动载荷较高且轮轨黏着水平较低时,接触斑内表现为全滑动状态。研究结果可为车轮/钢轨异常磨损和型面优化设计进一步研究提供理论基础。  相似文献   

12.
轨道短波不平顺是引起轨道-车辆系统高频振动的主要根源,造成轮轨之间剧烈的相互作用力。利用ABAQUS计算软件显式模块建立的轮轨接触有限元模型,用于求解车辆高速运行时轨道短波不平顺作用条件下的高频轮轨接触力。该模型采用轮轨的真实形状建模,并且可引入任意形状的轨道短波不平顺及轨道状态参数。以某高铁线路上实测轨道短波不平顺作为输入,接触模型仿真输出的轮轨垂向力与高速综合检测列车在对应区段上实测轮轨垂向力数据之间的相关系数为0.82,验证了所建模型的正确性。利用高频轮轨模型计算不同速度条件下不同参数的余弦型轨道短波不平顺引起的动态轮轨垂向力,对比分析计算结果表明:动态轮轨垂向力不仅与轨道短波不平顺的幅值有关,还车辆与轨道短波不平顺波长敏感程度有关,在车辆运行速度不低于200 km/h的条件下,车辆对轨道短波不平顺的敏感波长分布在100~200 mm。  相似文献   

13.
列车车轮多边形磨耗会显著加大轮轨相互作用力和转向架关键部件振动幅度,恶化车辆系统和轨道部件的工作环境,严重时将会威胁到行车安全。基于三维车辆-轨道耦合动力学模型,用谐波叠加法模拟车轮多边形磨耗,作为车辆轨道耦合动态行为分析时的激励输入,计算车轮多边形磨耗阶次、车辆运行速度和运行里程对轮轨力的影响,并分析车轮多边形磨耗与轮轨力之间的相位关系;建立转向架系统高频振动全有限元模型,以时域轮轨力作为模型输入,分析车轮多边形磨耗参数对转向架轴箱、构架振动响应的影响。计算结果显示,随着列车运行速度、车轮多边形磨耗幅值和阶数的提高,轮轨垂向作用力波动范围和转向架振动响应均会显著增大。所得的结果可为高速列车车轮多边形形成的机理和抑制措施的进一步研究提供参考和指导。  相似文献   

14.
以CRH3型高速列车头车与标准CHN60型轨道为研究对象,利用动力学软件RecurDyn建立车辆-轨道耦合动力学模型;采用弹簧阻尼模型定义轮轨接触关系,跟踪检测服役列车不同运行里程下的车轮粗糙度,根据相关文献的轮轨接触刚度计算结果,对高速轮轨滚动接触动力学性能进行研究,并取该头车的后转向架二位轮对处结果进行数据分析。计算结果表明:随着高速列车运行里程的增加,车轮表面粗糙度减小,使得轮轨接触刚度增大;轮轨横向力随着运行里程的增加先减小后增大,其频率主要分布在10 Hz以下的低频段;轮轨垂向力随着运行里程的增加而增加,并在5、10、28 Hz附近有比较明显的主频率段;轮轨纵向力主要由切向蠕滑力的纵向分量构成,与轮轨垂向力在时域分布和频域分布上均非常相似。  相似文献   

15.
采用显式有限元法建立三维瞬态滚动接触模型,用于求解高速铁路的轮轨瞬态滚动接触问题。该模型考虑轮轨的真实几何形状,可引入任意接触面不平顺,并可考虑材料的非线性行为。显式有限元的条件稳定性以及由此所决定的极小时间步长使得该模型适合于时域内求解轮轨高速滚动过程中的高频动态或瞬态现象,如分析钢轨焊接接头和波浪形磨损引起的轮轨瞬态冲击响应。因数值重现三维轮对的真实滚动行为,与之相关的自旋、陀螺仪效应等因素自动包含于模型之中。进一步考虑车辆、轨道系统的相关部件,着重研究高速车辆-轨道系统在钢轨波浪形磨损处的瞬态响应及相应的瞬态滚动接触行为。结果显示波浪形磨损与其所激发的动态轮轨接触力间存在相位差,且该相位差随滚动速度增加而减小。这解释了高速线路上波浪形磨损出现后很快进入稳态的现象。  相似文献   

16.
基于钢轨型面扩展法的车轮型面设计   总被引:8,自引:2,他引:8  
首先对欧洲国际铁路联盟(Union enternationale des chemins der fer, UIC)高速轮轨型面S1002/UIC60和我国准高速型面LMa/CHN60进行接触几何分析,认为LMa/CHN60型面共形度太低,对钢轨磨损以及滚动接触疲劳极为不利.以改善钢轨的受力状态为出发点,在对钢轨型面扩展法进行数值研究的基础上,采用钢轨局部型面扩展法,根据我国60 kg/m钢轨设计出共形度较高的车轮型面.通过车辆轨道耦合动力学仿真确定车辆临界速度约为400 km/h,且具有较好的曲线通过性能.轮轨非赫兹滚动接触分析表明,在靠近钢轨一侧接触斑面积、应力等较LMa型面变化不大的情况下,离开钢轨一侧接触斑面积明显增大,接触应力降低约20%,钢轨与车轮的接触带变宽,钢轨接触频次得到改善.在车轮型面优化设计做了尝试性工作,以期为我国高速、重载以及城市轨道交通车辆车轮型面优化设计提供借鉴.  相似文献   

17.
车轮磨耗计算模型及其数值方法   总被引:6,自引:1,他引:5  
综述国内外车轮磨耗理论模型及其数值方法,提出基于车辆轨道垂、横向耦合动力学、轮轨滚动接触力学和材料摩擦磨耗模型为一体的车轮磨损计算模型, 并发展相应的数值方法。模型中车辆结构和钢轨下部结构被简化成等效质量、弹簧和阻尼系统, 而钢轨用Euler 梁代替, 并考虑它的垂向、横向弯曲变形和扭转变形。利用修改的KALKER三维弹性体非Hertz 滚动接触理论和相应的数值方法计算轮轨蠕滑力和滑动量等参量;根据Archard材料磨损模型计算车轮的磨耗深度。利用该模型和相应的数值方法分析不同曲线半径情况下车轮的磨损情况,结果表明该模型可以较好地模拟车轮磨损的演化过程。给出列车通过曲线半径为350 m时车轮的磨损情况。数值结果表明,每个转向架下前轮对比后轮对磨耗严重,外轨上的车轮比内轨上的车轮磨耗严重。  相似文献   

18.
为研究地铁出站口附近直线起动区段钢轨波磨形成原因,利用有限元软件ABAQUS建立了三维实体轮对-轨道瞬态滚动接触模型,并结合现场实测,从时域和频域上对波磨现象进行了分析。研究结果表明:车辆起动过程中,车轮与钢轨表面接触带会产生准周期特性的滑移区域,且滑移区域中心之间的距离与实测波磨的波长范围接近,从而验证了模型的合理性和有效性;轮轨系统的不稳定摩擦自激振动是导致实测区段钢轨波磨产生的根本原因,正是由于轮轨蠕滑力“饱和-非饱和”的周期特性,最终促使了波磨的形成;钢轨和车轮的垂向振动加速度等级在160~230 Hz频率范围内均出现了峰值区域,且频率范围与实测波磨的特征频率范围174~198 Hz接近,这进一步说明钢轨波磨是轮轨系统摩擦自激振动引起的车轮-钢轨共振所产生;在忽略初始不平顺的前提下,钢轨表面的波磨会随着车轮运行次数的增加呈现线性增长趋势,因此适当地采取钢轨打磨以及轨面润滑等措施尤为重要。  相似文献   

19.
车轮多边形会造成轮轨冲击,对车辆、轨道零件造成破坏,严重影响列车运行的安全稳定性。以CRH3型车作为研究对象,建立动力学仿真模型,模型中将车轮考虑成刚性,将轨道视为柔性体,通过实测与仿真对比验证了模型;通过改变轮对的形状,研究谐波数、波深、车速对轮轨力的影响。研究结果表明,车轮多边形阶数、波深、车速对轮轨力影响较大,在车速为300km/h下波深0.14mm时出现跳轨,波深达到0.24mm时,轮轨力最大值超限。该研究结果为进一步研究轮轨关系、保证列车安全运行提供了理论支持。  相似文献   

20.
针对我国某型250 km/h级动车组近年来发生的连续型车轮滚动接触疲劳,赴涉及的动车组运用所开展为期约2个镟修周期的跟踪测试。测试结果表明,该疲劳裂纹在镟后10~15万km开始出现在名义滚动圆外侧15~30 mm范围内,表面裂纹角度多在45°和-45°左右,一个镟修周期内可萌生并扩展至0.25~1.2 mm深,但不会发展成剥离掉块,不影响正常运营。基于跟踪测试数据,采用SIMPACK建立车辆—轨道耦合动力学模型,其结果进一步代入到安定图和损伤函数模型来预测滚动接触疲劳的萌生。结果显示,上述动车组滚动接触疲劳是由部分曲线低轨侧轮轨廓形匹配不佳导致的,其根本原因可能是不合理地钢轨打磨廓形和车轮凹磨等。详细分析表明,可导致滚动接触疲劳的恶劣轮轨接触状态只发生在极个别曲线段,这是为什么线路上存在数量相当的左、右曲线,而往返运行不调头的上述动车组的滚动接触疲劳只集中在列车一侧。最后,讨论目前滚动接触疲劳预测模型的局限性,指出未来研究方向。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号