首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
为研究空气轴承在动静压下的稳态承载性能,使用三维建模工具建立动静压气体轴承模型,从连续方程、可压缩流体润滑方程、气体状态方程出发,得到等温条件下稳态气体润滑Reynolds方程,并计算轴承稳态承载力。对螺旋槽小孔节流空气轴承结构建立三维模型,借助Fluent仿真软件对整个流体域进行仿真分析,探讨螺旋角、偏心率、槽宽比、槽深比、槽长比等参数对气体轴承承载性能的影响。结果表明:气源压力一定时,气膜承载力随着偏心率的增加呈现非线性上升趋势,随着槽宽比的增加呈现下降趋势,槽宽比越大,这种下降趋势更加明显;随着槽深比和槽长比的增加,气膜承载力呈现先增加后降低的趋势。对轴承结构进行优化,优化后的轴承承载性能更优。  相似文献   

2.
建立人字槽径向气体动压润滑轴承的数学模型,采用局部积分有限差分法在不连续求解域内推导出气体润滑Reynolds方程的差分形式,通过求解获得轴承间隙内的气膜厚度、气膜压力、轴承承载力等状态特性,并分析径向间隙、螺旋角、槽深比、槽宽比和槽数等轴承几何结构参数以及转速等工况条件变化对轴承承载能力的影响规律。结果表明:人字槽轴承的压力在圆周方向呈锯齿形分布,人字形压力带环抱在轴颈上,使轴承在各个方向上均能承载,从而提高了轴承的抗振性和平稳性;增大偏心率,减小气膜间隙,增大螺旋角,减小槽深,增加槽宽比,适当增加槽数,均可提高轴承承载力;人字槽结构能够更好地实现气体动压润滑轴承动压效应,提高了轴承的承载能力和稳定性能。  相似文献   

3.
圆锥形螺旋槽气体动压轴承的数值分析   总被引:1,自引:0,他引:1  
运用有限差分法对圆锥形螺旋槽气体动压轴承的静特性进行了数值计算,并对计算结果进行了分析.结果表明:螺旋槽能很好地实现气体轴承动压效应,螺旋槽的螺旋角、槽数、槽深比和槽宽比等对轴承的承载量都有不同程度的影响.  相似文献   

4.
建立了球面螺旋槽气体动静压轴承的微气膜有限元模型,应用CFD技术和流体动力学Fluent软件,研究了球面螺旋槽气体动静压轴承在稳态下的承载特性,得到了轴承在不同转速下的压力分布云图,进而揭示了在不同运行参数和结构参数下,轴承承载力及动静压耦合效应的变化规律。结果表明,选择合适的结构参数和运行参数,如槽宽比、槽深比、螺旋角、槽数、转速等,有助于提高轴承的承载性能。  相似文献   

5.
为提高动静压气体轴承的承载特性,以人字槽小孔节流动静压气体轴承为研究对象,运用流体力学理论对气体轴承的气膜流场特性和承载特性进行分析,研究不同转速时人字槽小孔节流动静压气体轴承承载力的变化规律,分析不同偏心率下人字槽槽数及几何参数对轴承承载特性的影响。结果表明:随转速的增加,人字槽产生的动压效应不断增强,轴承承载力不断提高;偏心率的增大可以提高轴承的承载力;同一偏心率下轴承的承载力随人字槽槽数的增多逐渐增大,当人字槽槽数小于10时,承载力增加较快,当人字槽槽数大于10时,承载力增加缓慢;随人字槽槽深比和槽宽比的增大承载力先升高后降低,在槽深比为2.4、槽宽比为0.55时承载力达到最高值。  相似文献   

6.
建立半球螺旋槽气体动静压轴承润滑分析数学模型;通过建立广义坐标系并进行保角变换简化数学模型,利用广义斜坐标变换划分求解域球面网格,提高数值计算精度;采用有限差分法对控制方程离散,建立控制方程的差分表达式,并采用VC++6.0编程计算三维微气膜稳态气膜厚度和压力分布;通过对微气膜周向和径向压力积分,求得轴承稳态的承载能力;研究动压和静压的耦合效应,分析螺旋槽结构参数、节流孔的数量对轴承承载力的影响规律。结果表明:随着小孔个数的增加,静压效应显著增加,轴承的承载力明显增加;随着螺旋角、槽深比、槽宽比的增大,轴承的承载力均先增大后减小,表明通过轴承优化设计参数可改善气体的润滑特性,提高承载力。  相似文献   

7.
李云龙  董志强 《轴承》2022,(1):23-28+40
基于纳维-斯托克斯(N-S)方程建立了泵入型螺旋槽动压推力气体轴承仿真三维模型,分析了在变工况运行中不同的结构参数对螺旋槽动压气体推力轴承气膜承载力的影响,结果表明:槽深为30~50μm,螺旋角为18°~36°,台区轴承间隙为4~10μm,槽内径比为0.6~0.8,槽宽比为0.7~0.9,槽数为12~25时,该轴承的气膜承载力达到最大;轴承结构不同时,轴承的气膜承载力由大到小排序为凸型槽、平底槽、凹型槽,且泵入型大于泵出型。  相似文献   

8.
柱面螺旋槽气膜密封结构参数设计分析   总被引:1,自引:1,他引:1  
针对柱面气膜密封中的人字形螺旋槽结构,采用了几何结构适应性强的有限元法对密封气膜的压力场进行数值计算;定量地计算分析了螺旋槽结构参数对密封特性的影响,建立了螺旋槽几何结构参数变化对承载力、摩擦转矩、泄漏量等影响的规律曲线。计算结果表明:螺旋槽的存在对动压气体润滑压场分布产生较大的影响,压场呈现锯齿状分布;槽的各参数对密封稳态特性有直接的影响,从密封设计角度考虑,槽数取值在14~24之间,螺旋角在60°左右,槽宽比的选择在0.5左右为佳;槽深比、槽长比对泄漏和摩擦力矩影响互相制约,应用中需要考虑其对动态特性的影响。设计中还需结合具体的工况场合,分析比较后确定各参数。  相似文献   

9.
通常在气体轴承相关计算中简化了雷诺方程,忽略了惯性力的影响。而当轴承转速非常大时,气体的惯性力影响增大,忽略惯性力会带来较大误差。建立考虑惯性力的高速螺旋槽气体止推轴承理论计算模型,采用有限元法求解雷诺方程,得到考虑惯性力时的气膜压力分布和轴承承载力,并分析转速变化时轴承承载力的变化。结果表明,高转速时气体的惯性力会显著降低轴承承载力。分析50 000 r/min高转速下各参数变化对承载力的影响。结果表明:螺旋槽深度及槽长比变化时,承载力均会出现极大值,且在出现极大值时惯性力的影响最大;随着气膜厚度增大,承载力逐渐下降,且惯性力的影响逐渐增大;随着螺旋槽数量增加,承载力逐渐增大,而惯性力的影响较稳定。分析转子轴线倾斜对承载力的影响,结果表明在相同转速及相同轴承参数下转子轴线倾斜时承载力略微增大。  相似文献   

10.
为研究螺旋槽动压径向气体轴承承载特性,运用SolidWorks软件建立其物理模型。基于气体润滑基本方程Navier-Stokes方程,推导出可压缩非定常雷诺方程式。应用CFD技术和流体动力学Fluent软件对气体润滑基本方程Navier-Stokes方程直接求解,得到轴承在不同转速条件下的压力分布,以及轴承承载能力随螺旋槽动压径向轴承结构参数和运行参数的变化规律。结果表明;螺旋槽气体动压轴承在偏心方向气膜厚度最小,压力相对其他区域较大,随着转速的提高,轴承的动压效应更加显著,使得最大压力值逐渐增大;随着槽长、槽深比、槽数等结构参数的增加,以及偏心率、转速等运行参数的增加,轴承承载能力增大;而随着半径间隙的增大承载力减小。研究结果为螺旋槽动压径向气体轴承的设计及优化提供理论依据。  相似文献   

11.
采用有限差分方法,基于对螺旋槽端面气膜压力分布、流速分布和泄漏率变化的数值计算分析,探讨低压上游泵送螺旋槽气体端面密封实现被密封介质零泄漏的作用机制和变化规律。结果表明,螺旋槽上游泵送作用可在高压侧形成周向封闭的高于密封压力的高压流体环带,阻止被密封介质进入密封间隙,实现被密封高压介质的零泄漏,形成密封介质的完全的反向泄漏;泄漏率随转速、槽数和膜厚的增加先减小后增大,随槽深、螺旋角和槽台宽比的增加先增大后减小,随槽根半径增加而减小;当转速、膜厚和槽数达到一定值时,泄漏方向会发生改变;开启力随转速和槽数增加而增大,随着膜厚的增大而减小,随槽深、螺旋角、槽台宽比和槽根半径的增加呈先增大后减小的趋势。  相似文献   

12.
以球面螺旋槽气体动压轴承为研究对象,建立了球面螺旋槽气体动压轴承的润滑分析数学模型,基于CFD技术,采用流体动力学Fluent软件,对球面螺旋槽气体动压轴承的三维气膜压力场进行分析,揭示不同转速下,轴承槽宽比、槽深比、螺旋角、气膜间隙对稳态轴承气膜压力以及承载能力的影响规律,并在此基础上,对轴承的结构参数进行了优化。结果表明,应用Fluent软件进行数值分析可以精确地模拟区域内气膜的复杂流场特性,并且转速越高,气体轴承内部的动压效应就越明显,因此合理地选择轴承结构参数和运行参数有助于改善润滑性能,提高轴承的稳态承载特性。  相似文献   

13.
应用fluent软件对螺旋槽型机械密封润滑液膜特性进行了数值模拟,得到了润滑液膜流场的压力分布、泄漏量、液膜开启力;通过比较不同螺旋槽几何参数的密封特性,得到了较优的螺旋槽型几何参数值:槽数12、螺旋角0.3 rad、槽长比0.7、槽宽比0.7、槽深10μm。  相似文献   

14.
为进一步提升静压气体轴承的静态性能,以普通孔式节流为基础,配合表面周向和径向槽节流,提出复合节流式静压气体轴承,以充分发挥2种节流方式的优点,使静压气体轴承具有更好的承载能力和刚度。利用Fluent计算轴承内流场参数并分析流场特性,比较复合节流式与普通孔式节流静压气体轴承的承载能力和刚度,并研究孔式参数和表面槽参数对复合节流式静压气体轴承静态特性的影响。结果表明:在一定气膜厚度范围内,复合节流式静压气体轴承对于提升承载力、增强刚度有着显著的效果;复合式节流因为有表面槽二次节流的存在,均压效果更好。增加节流孔数、节流孔直径、节流孔分布圆半径,以及在气膜厚度较小时增加表面槽长、槽宽、槽深,均有利于增加轴承承载力;在气膜厚度较小时,增加节流孔数、减小节流孔直径,以及增加表面槽长和槽宽、降低槽深,均有利于增加轴承刚度。  相似文献   

15.
螺旋槽干气密封的优化设计   总被引:26,自引:1,他引:26  
彭建  顾永泉 《流体机械》1995,23(3):24-27
用有限元法对螺旋槽干气密封进行了研究,以最大刚漏比为目标对其结构进行了优化,结果表明螺旋槽的槽深、槽数、螺旋角、槽宽堰宽比、槽长坝长比对密封的性能都有较大的影响,优化结果对干气密封的进步一步研究具有较重要的指导意义。  相似文献   

16.
螺旋槽气膜浮环密封结构参数设计分析   总被引:1,自引:1,他引:0  
介绍了螺旋槽气膜浮环密封的结构特点,利用CFD-FLUENT软件分析比较了普通浮环、无坝区螺旋槽浮环和有坝区螺旋槽浮环3种结构的密封性能,建立了螺旋槽几何结构参数变化对浮升力、泄漏量等影响的规律曲线。计算结果表明:有坝区螺旋槽浮环结构密封性能最好;螺旋槽结构参数对密封特性影响较大,综合考虑较小的泄漏量和较大的浮升力,取较小的螺旋角,槽数26~30,槽长7~9mm,槽深25μm左右,槽宽比0.5较适宜。  相似文献   

17.
针对高速动静压气体轴承气膜的复杂非线性动力学行为,以球面螺旋槽动静压气体轴承为研究对象,建立润滑分析数学模型;采用有限差分法与导数积分法进行求解,得到动态扰动压力分布及动态特性系数,并研究切向供气条件下螺旋槽参数、径向偏心率、供气压力、转速对气膜刚度阻尼系数的影响规律;建立线性稳定性计算模型,预测气膜涡动失稳转速,分析运行参数对失稳转速的影响。结果表明:气膜阻尼是一种抑制涡动的因素,气膜的稳定性取决于气膜刚度与阻尼的协同作用;气膜刚度阻尼随着槽宽比、槽深比、螺旋角的增大,整体上呈先增大后减小的趋势;刚度随转速的升高而增大,阻尼则随转速的升高而减小;径向偏心率和供气压力越大,气膜刚度和阻尼越大;在一定范围内,提高供气压力、增大径向偏心率能够提高系统失稳转速;合理地选取轴承结构参数和运行参数,能够优化轴承动态特性,保证气体轴承较高的运行稳定性。  相似文献   

18.
建立单螺旋角槽干气密封的数学模型,利用数值方法分别研究槽数、螺旋角、槽深、气膜厚度、槽台比以及转速对密封性能的影响规律,计算结果与文献的实验值基本吻合。通过分析对比泄漏量、流场压力分布、平均开启压力等密封性能参数,优化出性能最佳的干气密封几何结构参数。针对单螺旋角槽在螺旋槽入口处的吸力面上存在明显的低压区的问题,提出双螺旋角槽干气密封结构。计算结果表明:双螺旋角槽在密封端面之间产生平均开启压力高于单螺旋角槽;相比于单螺旋角槽,双螺旋角槽在吸力面的入口处的流动分离更加明显,在槽区产生的动压效应更加明显;双螺旋角螺旋槽的密封性能更佳,其气体泄漏量也低于单螺旋槽。  相似文献   

19.
基于CFD正交试验的螺旋槽干气密封性能仿真研究   总被引:1,自引:0,他引:1  
基于CFD数值仿真结合单因素试验和正交试验,研究螺旋角、槽深、槽数、槽宽比和槽长坝长比对螺旋槽干气密封性能的影响。单因素试验揭示开启力和泄漏量随各参数的变化规律,并为正交试验因素水平合理选择提供依据。由正交试验得到分别以开启力、气膜刚度和刚漏比为目标函数的最优端面结构。由极差分析得到各结构参数对密封性能影响的主次顺序,槽长坝长比是影响开启力和泄漏量的最主要因素,而气膜刚度和刚漏比主要由槽深和螺旋角决定。  相似文献   

20.
基于CFD数值仿真结合单因素试验和正交试验,研究螺旋角、槽深、槽数、槽宽比和槽长坝长比对螺旋槽干气密封性能的影响。单因素试验揭示开启力和泄漏量随各参数的变化规律,并为正交试验因素水平合理选择提供依据。由正交试验得到分别以开启力、气膜刚度和刚漏比为目标函数的最优端面结构。由极差分析得到各结构参数对密封性能影响的主次顺序,槽长坝长比是影响开启力和泄漏量的最主要因素,而气膜刚度和刚漏比主要由槽深和螺旋角决定。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号