首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
提出了基于并联结构的三自由度姿态测量机构,将其连接到三自由度串联结构位置测量装置末端可以实现对被测物体六自由度位姿的综合测量。该测量机构克服了并联机构运动学正解的困难,得到运动平台姿态坐标参数的显式解。建立了基于全微分理论的姿态测量机构坐标参数误差模型,实现机构运动学参数的优化设计。误差因子分析使得机构运动学参数设计更为合理。  相似文献   

2.
利用齐次坐标变换方法从理论上研究了单针扫描式螺纹测量仪的工件定位误差模型,并考虑探针尖头的几何形状,建立了更加精准的曲线方程。以该曲线作为最小二乘拟合曲线,根据数学模型的特点和参数的取值范围,采用改进的单纯形-模拟退火(SMSA)算法,通过对标准件的测量,求解模型参数,补偿对应误差,减小了简单直线拟合的模型误差。基于该方法,在自主研发的测针式螺纹测量仪上进行了实验验证,结果表明,所述模型更符合实际情况,能够有效地减小工件定位误差。  相似文献   

3.
喷涂建筑机器人在进行建图时无法将地面平整度的信息包含在地图中。当机器人按照所建地图运行时,由于地面信息的缺失,喷涂建筑机器人工作末端的喷涂夹具无法与墙面平行。为补偿喷涂夹具相对于墙面之间的位姿误差,提出一种基于无迹卡尔曼滤波的多传感器融合的喷涂夹具位姿补偿方法:以位移测量传感器测得的数据构建夹具位姿的状态方程,以陀螺仪测得的数据构建夹具位姿测量方程;利用无迹卡尔曼滤波算法获得夹具姿态的最优估计并将其传递给机器人,从而实现对喷涂夹具位姿误差的补偿。搭建实验平台验证了误差补偿系统的可行性。实验结果表明,误差补偿后的喷涂夹具相对于墙面之间的角度误差减小至0.005°。  相似文献   

4.
为提高球面透镜曲率半径的测量精度,提出基于五维位姿监测调整的差动共焦曲率半径高精度测量方法。通过驱动被测样品回转,在探测器上监测被测件的共焦点轨迹,测量被测件球心点与测量光轴之间的偏心误差,结合位姿调整系统对偏心误差进行自动补偿,确保测量过程中被测件球心与测量光轴重合,消除被测样品球心离轴引入的测量余弦误差,进而消除每次装调的样品位姿误差对测量精度的影响。理论计算和初步实验表明:该方法对曲率半径的相对重复测量精度(RMS)可达到3.2×10-6。该方法显著提升了曲率半径的重复测量精度,为曲率半径的精密测量提供了有效途径。同时,该方法还为透镜中心偏、焦距、厚度、镜组间隔等多种参数的高精度测量提供了有效方法。  相似文献   

5.
为提升风洞捕获轨迹试验的水平,设计了一套模拟外挂物从母机分离运动轨迹特性的六自由度机构。通过D-H法进行运动学分析,建立该机构运动学方程,利用解析法对机构进行逆运动学求解。采用微分传递法建立基于D-H参数的静态误差模型,推导出末端外挂物模型位姿误差与D-H参数误差之间的数学表达式,然后采用奇异值分解改进的最小二乘法进行迭代求解辨识出参数误差,在此基础上随机选取100组位姿数据,分析比较了补偿前与补偿后的位置误差,结果表明经过参数辨识后的补偿法能够有效地提高六自由度机构末端的定位精度。  相似文献   

6.
以某火箭发动机尾喷口与燃烧室法兰端口自动对接为例,设计TTTRRR六自由度对接机构,结合海克斯康Leicaprobe自动激光跟踪仪获取位姿信息,并求解位姿调整参量。分析六自由度对接机构的X/Y/Z三个平动导轨,A/B/C三个转动轴的制造误差、安装误差、运动误差等共计42项误差,并分别对每个运动单元进行误差运动学分析,通过齐次坐标变换技术对尾喷口法兰位姿建立空间位姿实际与理想空间位姿变换模型,推导空间位姿综合误差模型及尾喷口位姿误差,并通过算例仿真验证方法。  相似文献   

7.
关节臂式坐标测量机误差仿真系统建模与分析   总被引:2,自引:0,他引:2  
为了提高六自由度关节臂式坐标测量机的测量精度,建立了相应的坐标系统及误差模型,并基于误差模型在Matlab软件中建立了误差仿真系统,根据误差仿真结果绘制了关节空间的误差分布图.仿真结果表明:当关节长度、杆长和测头长度的误差传递到测量结果上时,没有被放大或缩小,且不受测量机位姿的影响;而关节转角和关节扭转角误差传递到测量结果上时,被严重放大,放大效果受关节顺序和测量机位姿影响显著.最后根据分析结果对角度传感器和轴承的选择、零件的加工精度要求和测量位姿提出了建议.  相似文献   

8.
光学非球面坐标测量中位姿误差的分离与优化   总被引:2,自引:0,他引:2  
在开发了一种专用非球面坐标测量机的基础上,分析了测量系统与工件在空间6个自由度上的相对位姿误差的关系,建立了位姿误差的数学模型。利用模型参数估计的方法,建立了测量数据与名义面形之间基于最小二乘法的优化模型,得到了上述位姿误差的最小二乘估计,并据此对工件面形误差测量结果进行校正,消除了位姿误差的影响,提高了测量结果的可信度与精度,最终使测量系统精度达到0.5 μm,重复精度优于0.3 μm。  相似文献   

9.
为解决微动平台末端六维位姿的高精度测量问题,研究基于双光束激光干涉仪的位姿测量方法。利用空间正交布置的三台双光束激光干涉仪,测量微动平台上3个待测平面的线位移和角位移,通过测量系统的数学模型计算得到微动平台的六维位姿。建立了测量系统的数学模型,设计了高精度的简化求解方法,分析了各系统误差对测量结果精度的影响,为建立微动平台高精度位姿测量系统提供了理论基础,并成功应用于实际微动平台的标定。  相似文献   

10.
为削弱接触式测头对高精度三维螺纹测量机精度的影响,设计了一种接触式测头结构尺寸优化方案,并提出了相应的标定方法。通过有限元仿真和正交试验优化测头结构参数,确定最优结构参数;利用坐标变换理论和最小二乘法原理建立测头标定模型并进行了标定试验;通过不同预压量下的螺纹塞规对比试验及螺纹环规、塞规对比试验对优化后的测头进行测试。结果表明:接触式测头测量螺纹塞规、环规参数标准偏差在1 μm左右,满足三维螺纹综合测量机接触式测头测量精度要求。该优化方案及标定方法为测头结构设计提供了重要的理论基础。  相似文献   

11.
针对某大尺寸飞行器质量特性测量设备,利用运动学原理对测量结果进行误差补偿,提高其测量精度。根据D-H模型建立机械结构的运动学方程,分析机械结构的几何参数误差对测量结果的影响。在标定几何参数时,对一些能够精准测量得到的参数,忽略其微变化量,在简化标定方程的同时,方便了参数误差的解算。为提高标定效率,利用粒子群(Particle swarm optimization,PSO)算法对标定位姿进行寻优,分析并建立标定姿态与观测指标函数之间的关系,确定当观测指标函数取最大值时对应最优的标定姿态。标定试验结果表明,利用最优标定位姿进行标定可以快速而准确地得到几何参数的误差,进而得到测量位姿误差。分别在补偿位姿误差和未补偿位姿误差的情况下测量标准件的质量特性,测量结果表明补偿后的质心的最大误差减小为原来的10%左右,转动惯量和惯性积的最大误差分别减小为原来的50%和20%。  相似文献   

12.
针对在机激光扫描测量中激光测头安装位置和姿态引起的测量误差,提出了一种适用于在机激光测量的测头标定方法。构造了在机激光扫描测量原型系统,建立了激光测头随机床运动的测量模型;通过多角度扫描标准球球面拟合球心,给出了一种线性求解测头安装位姿参数的算法,避免了非线性优化求解中的大量计算和不稳定问题。分析了测量过程中机床各个轴的运动误差对测量结果的影响,建立了误差模型,并给出补偿机床系统误差的方法。实验显示,对直径已知的标准球进行测量时,测头在不同摆角测得的标准球直径误差小于0.05 mm,误差补偿后球心位置误差减小了83%。实验结果验证了该标定方法的可行性,以及机床误差对测量精度影响的模型及补偿方法的正确性。  相似文献   

13.
建立了悬置式3自由度并联机构的位置逆解模型;依据全微分理论建立了机构的误差模型,得到了该机构的输出位姿误差与各原始误差源之间的映射关系,对于给定的各结构参数和驱动误差,应用此模型可求出机构的输出位姿误差,为实际误差补偿提供理论依据.  相似文献   

14.
以6SPS并联机构为原型,分析其运动学正反解。利用欧拉法预估并校正位姿,提出一种并联式六自由度位姿传感器,阐明其测量原理。借助雅可比矩阵建立误差模型,分析测量误差对位姿精度的影响,并采用拉线式编码器设计嵌入式六自由度位姿传感器。而后通过实验对该位姿传感器的精度进行检验,并成功应用于500 m口径球面射电望远镜馈源舱动态补偿模拟装置中。  相似文献   

15.
设计了一种新型三自由度位姿测量平面组合传感器装置,用于完成对平面运动的两个移动自由度和一个转动自由度的动态测量。介绍了传感器的机构构成和测量原理,利用微分法原理建立了误差模型,对误差产生原因进行分析,得出了机构误差对测量精度的影响曲线,试验和仿真验证了新型平面组合传感器机构的合理性。新型平面组合传感器机构简单,测量精度高,适用于特定环境下的高精度平面运动位姿测量。  相似文献   

16.
根据所构建的空间运动链,机器人加工几何误差一方面与手眼/工件/工具位姿参数辨识误差有关,另一方面与机器人关节运动学误差与弱刚度变形有关.针对这一问题,研究基于运动学误差补偿的手眼位姿参数辨识、考虑测量缺陷影响的工件位姿参数辨识、基于实际加工曲面误差估计的工具位姿参数辨识等新方法,解决位姿参数辨识精度受限于机器人运动精度、现场测点不封闭/密度不均/高斯噪音、加工抖动/受力变形/回转轴误差等多种因素影响的问题;综合考虑关节运动学误差、弱刚度变形、误差补偿,以整体误差控制为目标,建立加工误差补偿与机器人位姿优化通用模型,可推广应用于法向深度(磨削/铣削)、切向滑移(制孔)、角度倾斜(切边)等多种机器人加工误差控制;完成手眼/工件/工具位姿参数辨识试验、整体误差补偿与机器人加工试验,验证所提方法的有效性.  相似文献   

17.
针对Stewart平台式的6-THRT型并联机构的研究,提出了一种中心轴测量模型。采用一般工业机器人位姿误差分析法,建立并联机构的误差模型,并结合单杆固定法来获取末端位姿信息,该模型包含了杆的制造、安装及铰链的位置安装等几何参数误差。通过Matlab软件进行仿真运算,分析了影响末端位姿的主要误差源。该研究为并联机器人的误差补偿提供了一定的理论依据。  相似文献   

18.
扫描测头是高精度三维螺纹综合测量机的核心部件,其动态特性严重影响了整机的精度。为了提高测量机的精度,对高精度螺纹三维尺寸测量线性扫描测头的动态特性进行了研究。首先分析了三维螺纹综合测量机用扫描测头的测量原理,然后建立了动态特性模型并提出了影响动态测量结果的因素,最后通过实验验证了这种测头结构的动态特性和测量处理方式的有效性。实验结果验证了影响因素的正确性,优化影响最大的采样间距因素可以过滤80%的无效数据点,从而使该段拟合平均残差平方和误差减小了91.0%,线性误差减小了67.4%,进而提高了三维螺纹测量机的测量精度。  相似文献   

19.
为了简化六自由度并联机构的参数标定过程,提高标定效率,降低标定成本,提出了基于正交位移测量系统的位姿测量装置及方法。首先,研究了该装置的位姿解算方法,利用空间解析几何的方法,求解其运动学正解与逆解。其次,利用微小位移合成法,建立了并联机构及正交位移测量系统组合体的误差模型。然后,基于误差模型,构建了组合体参数误差辨识的最优化问题数学模型,其中,传感器示值的平方和最小为目标函数,组合体的结构参数误差为设计变量。最后,利用正交位移测量系统对六自由度并联机构位姿进行测量,利用OASIS奥希思软件直接搜索出参数误差最优解,将其补偿到并联机构控制系统中,完成并联机构的参数标定。标定前后位姿误差对比表明:最大位置误差降低了58%~96%,最大姿态误差降低了92%~97%。利用正交位移测量系统进行并联机构参数标定,不仅可有效提升并联机构的定位精度,还可有效简化标定工作,提升标定效率,降低标定成本。  相似文献   

20.
为实现大型射电望远镜反射面面型误差实时测量与解耦补偿,满足大口径、高频率射电望远镜对高精度反射面的需求,对望远镜面型误差实时测量与补偿进行了研究。设计了一种基于6SPS型并联机构的面板相对位姿传感器,通过建立数学模型对测量原理进行分析。针对现有主动面调整装置引起的面板误差耦合问题,提出一种6PSS构型调整装置,对安装方式、调整原理进行分析,并建立运动学模型。将面板相对位姿传感器与主动面调整装置相结合,组成反射面精度实时测量与误差解耦补偿系统,建立系统数学模型,通过数值算例验证可行性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号