首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   73篇
  免费   10篇
化学工业   30篇
机械仪表   3篇
建筑科学   2篇
能源动力   5篇
轻工业   3篇
无线电   12篇
一般工业技术   13篇
冶金工业   1篇
原子能技术   1篇
自动化技术   13篇
  2024年   2篇
  2023年   2篇
  2022年   4篇
  2021年   4篇
  2020年   8篇
  2019年   8篇
  2018年   4篇
  2017年   6篇
  2016年   3篇
  2015年   3篇
  2014年   4篇
  2013年   9篇
  2012年   7篇
  2011年   4篇
  2010年   3篇
  2009年   2篇
  2007年   3篇
  2006年   1篇
  2005年   2篇
  2004年   2篇
  2003年   1篇
  2001年   1篇
排序方式: 共有83条查询结果,搜索用时 15 毫秒
1.
Spark plasma sintering (SPS) has been used to synthesise samples of a model dual-phase (DP) system, consisting of copper and AISI420 martensitic steel. Mixed powders were sintered at different temperatures in the range from 850°C to 1000°C using a loading pressure of 60?MPa. Tensile testing revealed dimpled fracture surfaces in samples sintered at higher temperatures, indicating ductile failure and good interfacial bonding between the phases, with the best results overall obtained for samples sintered from wet-mixed powders. The results show that by control of the mixing, sintering and post-sintering heat treatment conditions, the fabrication of dense samples covering a range of DP microstructures is possible using SPS, with independent control of the microstructure and properties of the two phases.  相似文献   
2.
Farmyard manure (FYM-BC) and poultry manure (PM-BC) derived biochars were applied as adsorbents to remove Cd2+ from water. Results indicated that PM-BC was a more efficient adsorbent than FYM-BC at all experimental conditions. Maximum Cd2+ adsorption was observed at pH 4, temperature 318 K and contact time 1 h, regardless of biochar type. The Langmuir model predicted maximum adsorption capacity of 90.09 mg g?1 for PM-BC. The data fitting to pseudo-second-order model proposed chemisorption of Cd2+ onto biochars. Thermodynamics indicated that adsorption was spontaneous and endothermic. Post-adsorption analysis provided evidences of strong chemical interactions between biochars’ functional groups and Cd2+ ions.  相似文献   
3.
In this research a new heterogeneous catalyst has been prepared for biodiesel production. The catalyst was prepared by sulfonating industrial sugar waste. Unlike homogeneous catalysts, which require further purification and separation from the biodiesel production reaction media, this inexpensive synthetic catalyst does not need to go through an additional separation process. This advantage consequently minimizes the total application costs. The catalyst was prepared by partially carbonizing sugar beet pulp at 400 °C. The carbonization product was then sulfonated with concentrated H2SO4 vapor in order to produce a solid catalyst. The prepared catalyst was used in the esterification reaction between palm fatty acid distillate (PFAD) and methanol. The effects of the temperature, methanol/PFAD ratio, reaction time and catalyst dosage on the efficiency of the production were individually investigated. The optimum biodiesel production occurred at 85 °C, a reaction time of 300 min, catalyst dosage of 3 g and methanol/PFAD ratio of 5:1 (mol/mol), lowering the acid value from 198 to 13.1 (mg KOH/g oil) or the equivalent, with a fatty acid methyl ester yield of around 92 %. The results suggest that the synthesized inexpensive catalyst is useful for biodiesel production from PFAD.  相似文献   
4.
On 8 October 2005, a devastating earthquake struck northern Pakistan and several parts of Pakistani- and Indian-controlled Kashmir. The severely hit areas lie in close proximity to the most tectonically active region of the western Himalayas. The earthquake destroyed close to 400 000 houses and over 75 000 people lost their lives. The intensity of the earthquake was such that it triggered widespread landslides, which caused considerable destruction of the area's forests, and blocked the mountain roads and rivers. Satellite imagery-based analysis can be effectively used to provide critical geologic information for determining the causes of earthquakes, mapping of faults and lineaments, as well as for hazards and damage assessment mapping. In this study, Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) imagery acquired on 27 October 2005 was analysed to assess earthquake-induced land cover changes in severely hit areas. Image analysis techniques including intensity hue and saturation (IHS), principal component analysis (PCA), Normalized Difference Vegetation Index (NDVI) and Iterative Self-Organizing Data Analysis Technique (ISODATA) were applied on VNIR–SWIR bands of ASTER for the purpose of identification and mapping of landslides triggered by the earthquake in areas of northern Pakistan and Pakistani-controlled Kashmir. The techniques proved effective in identifying freshly exposed surfaces on mountain slopes, landslide scars and debris deposits. Accurate identification and mapping of landslides and slope failures can play an important role in post-earthquake damage assessment and hazards mapping in earthquake-prone mountainous areas.  相似文献   
5.
The aim of this study was to assess the remineralization of enamel caries lesions using the self-assembling peptide P11-4 associated with different materials. Artificial early enamel lesions were prepared on 154 primary teeth. The samples were randomly divided into eight groups: (1) control, (2) P11-4, (3) fluoridate toothpaste (FT), (4) P11-4 + FT, (5) casein phosphopeptide–amorphous calcium phosphate (CPP–ACP), (6) P11-4 + CPP–ACP, (7) fluoridate bioactive glass toothpaste (BT), and (8) P11-4 + BT. The surface enamel microhardness (EMH) and energy-dispersive X-ray spectroscopy (EDS) of the teeth were then measured at the baseline, after demineralization, and after 28 days of remineralization. The enamel surfaces were assessed by field emission scanning electron microscopy (FESEM) and atomic force microscopy (AFM). The data were analyzed with one-way analysis of variance (ANOVA) (p < .05). EMH after demineralization was significantly lower than the baseline value (p < .001). The interventions led to an enhanced percentage of EMH recovery (%REMH), which was higher in Groups 6 and 7. There was no significant difference between Groups 3 and 4. Groups 1 and 2 had the lowest %REMH. The mean calcium/phosphate weight percentage ratio of P11-4 was significantly lower than the others (p < .001). The FESEM and AFM images revealed mineral deposition on the eroded enamel and reductions in surface roughness in Groups 5 and 7.  相似文献   
6.
This paper provides two types of control relevant models of planer solid oxide fuel cell system with different details. Dynamic models of system components which include heat exchanger, reformer and after-burner are also provided along with the necessary formulation of a fuel cell connected in parallel with a capacitor. Steady-state and dynamic simulations of fuel cell system for both types of models are performed. The results indicate that both models are comparable in predicting stack voltage at lower current load. But, the discrepancy in the stack voltage, power and temperature of different components become more prominent at higher current load.  相似文献   
7.
Mullite-type RMn2O5 (R = Y, rare-earth element) ceramics are of ongoing research attentions because of their interesting crystal-chemical, physical, and thermal properties. We report a detailed structural, spectroscopic and thermal analysis of the series of mullite-type RAlGeO5 (R = Y, Sm-Lu) phases. Polycrystalline samples are prepared by solid-state synthesis methods. Each sample is characterized by X-ray powder diffraction followed by Rietveld refinements, showing that they are isotypic and crystallize in the space group Pbam. The change of the metric parameters is explained in term of the lanthanide contraction effect. A rare inversion of Al/Ge between octahedral and pyramidal sites have been observed for these mullite-type so called O10 compounds, and the inversion parameter found to be between 0.22(1) and 0.30(1) for different R-cations. The <Al/Ge–O> bond distances and their bond valence sums (BVSs) support the respective inversions. Density functional theory (DFT) calculated phonon density of states (PDOS) and electronic band structures are compared for the vibrational and electronic band gap features respectively. Analysis of UV/Vis absorption spectra using both derivation of absorption spectra fitting (DASF) and Tauc's methods demonstrates that each of the RAlGeO5 O10 compounds is high bandgap semiconductor, possessing direct transition between 4.1(1) and 5.4(1) eV. Both Raman and Fourier transform infrared spectra show clear red shift (quasi-harmonic) of the vibrational wavenumbers with respect to the ionic radii of the R-cations. Selective Raman bands at higher wavenumber region further complement the inversion of Al/Ge between two coordination sites. The higher decomposition temperature of the RAlGeO5 compounds, compared to those of RMn2O5 phases, is explained in terms of higher bond strength of Al/Ge-O than those of Mn-O. Irrespective to the inversion between Al- and Ge-sites, the decomposition temperature also depends on the type of R-cation in RAlGeO5.  相似文献   
8.
In both developing and industrialized/developed countries, various hazardous/toxic environmental pollutants are entering water bodies from organic and inorganic compounds (heavy metals and specifically dyes). The global population is growing whereas the accessibility of clean, potable and safe drinking water is decreasing, leading to world deterioration in human health and limitation of agricultural and/or economic development. Treatment of water/wastewater (mainly industrial water) via catalytic reduction/degradation of environmental pollutants is extremely critical and is a major concern/issue for public health. Light and/or laser ablation induced photocatalytic processes have attracted much attention during recent years for water treatment due to their good (photo)catalytic efficiencies in the reduction/degradation of organic/inorganic pollutants. Pulsed laser ablation (PLA) is a rather novel catalyst fabrication approach for the generation of nanostructures with special morphologies (nanoparticles (NPs), nanocrystals, nanocomposites, nanowires, etc.) and different compositions (metals, alloys, oxides, core-shell, etc.). Laser ablation in liquid (LAL) is generally considered a quickly growing approach for the synthesis and modification of nanomaterials for practical applications in diverse fields. LAL-synthesized nanomaterials have been identified as attractive nanocatalysts or valuable photocatalysts in (photo)catalytic reduction/degradation reactions. In this review, the laser ablation/irradiation strategies based on LAL are systematically described and the applications of LAL synthesized metal/metal oxide nanocatalysts with highly controlled nanostructures in the degradation/reduction of organic/inorganic water pollutants are highlighted along with their degradation/reduction mechanisms.  相似文献   
9.
In previous work, an atmospheric pressure plasma jet was applied to successfully improve the electrospinnability of poly-ε-caprolactone (PCL) which enabled the fabrication of beadless nanofibers. In this paper, we report the aging effect of the plasma treatment to evaluate the robustness of the developed process. For this purpose, plasma-treated PCL polymer solutions with different exposure time were stored for 1 and 8 days and the aged solutions were analyzed in terms of conductivity, viscosity, surface tension, pH, and polymer molecular weight. During storage, the surface tension and acidity of the plasma-treated solutions were maintained constant. However, the viscosity was found to be significantly lower after 8 days which was attributed to PCL degradation. Electrospinning of all stored PCL solutions resulted in the generation of beadless PCL nanofibers. The plasma treatment effects were thus found to be highly stable over time and capable of producing high-quality PCL nanofibers up to 8 days. © 2020 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020 , 137, 48914.  相似文献   
10.
Recent convergence of the 3D printing of tissue‐like bioinks and regenerative medicine offers promise in the high‐throughput engineering of in vitro tissue models and organoids for drug screening and discovery research, and of potentially implantable neo‐tissues with tailored structural, biological, and mechanical properties. However, the current printing approaches are not compatible with collagen, the native scaffolding material. Herein, a unique biofabrication approach that uses automated gel aspiration‐ejection (GAE) is reported to potentially overcome these challenges. Automated‐GAE generates highly defined, aligned, dense collagen gel bioinks of various geometries (i.e., cylindrical, quadrangular, and tubular), dimensions, as well as tunable microstructural and mechanical properties that modulate seeded cellular responses. By densifying initial naturally derived reconstituted collagen hydrogels incorporating cells, automated‐GAE generates mini‐tissue building blocks with tailored protein fibril density and alignment, as well as cell loading, density and orientation according to the intended use. Surprisingly, a simple mathematical relationship defining the bioink compaction factor is found to be highly effective in predicting the initial and temporal properties of the bioinks in culture. Therefore, automated‐GAE will potentially also enable a fourth dimension to biofabrication, where cell–cell communications and cell‐extracellular matrix interactions as a function of time in culture can be predicted and modeled.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号