首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3221篇
  免费   262篇
  国内免费   190篇
电工技术   31篇
综合类   76篇
化学工业   664篇
金属工艺   445篇
机械仪表   71篇
建筑科学   86篇
矿业工程   23篇
能源动力   331篇
轻工业   69篇
水利工程   31篇
石油天然气   24篇
武器工业   5篇
无线电   221篇
一般工业技术   667篇
冶金工业   120篇
原子能技术   67篇
自动化技术   742篇
  2024年   2篇
  2023年   113篇
  2022年   109篇
  2021年   148篇
  2020年   207篇
  2019年   190篇
  2018年   86篇
  2017年   128篇
  2016年   177篇
  2015年   175篇
  2014年   299篇
  2013年   250篇
  2012年   310篇
  2011年   266篇
  2010年   159篇
  2009年   179篇
  2008年   98篇
  2007年   213篇
  2006年   123篇
  2005年   66篇
  2004年   38篇
  2003年   48篇
  2002年   43篇
  2001年   43篇
  2000年   37篇
  1999年   29篇
  1998年   11篇
  1997年   9篇
  1996年   13篇
  1995年   22篇
  1994年   16篇
  1993年   10篇
  1992年   13篇
  1991年   11篇
  1990年   14篇
  1989年   9篇
  1988年   6篇
  1986年   1篇
  1982年   1篇
  1980年   1篇
排序方式: 共有3673条查询结果,搜索用时 62 毫秒
1.
在多晶硅太阳能电池的生产过程中, 金刚线切割技术(Diamond wire sawn, DWS)具有切割速度快、精度高、原材料损耗少等优点, 受到了广泛关注。金刚线切割多晶硅表面形成的损伤层较浅, 与传统的酸腐蚀制绒技术无法匹配, 金属催化化学腐蚀法应运而生。金属催化化学腐蚀法制绒具有操作简单、结构可控且易形成高深宽比的绒面等优点, 具有广阔的应用前景。本文总结了不同类型的金属催化剂在制绒过程中的腐蚀机理及其形成的绒面结构, 深入分析和讨论了具有代表性的银、铜的单一及复合催化腐蚀过程及绒面结构和电池片性能。最后对金刚线切割多晶硅片表面的金属催化化学腐蚀法存在的问题进行了分析, 并展望了未来的研究方向。  相似文献   
2.
Energy bands, effective mass of carriers, absolute band edge positions and optical properties of tetragonal AgInS2 were calculated using a first-principles approach with the exchange correlation described by B3LYP hybrid functional. The results indicate that tetragonal AgInS2 has a direct band gap of 1.93 eV, which reproduce well experimental value. Calculated effective masses of electrons and holes are both small which are beneficial to separation and migration of electron and hole pairs. This implies that AgInS2 has good photocatalytic performance. The calculated optical characteristics indicate that AgInS2 has a slight anisotropy for both the real and imaginary parts of the dielectric function and exhibits large optical absorption in the visible light region. Furthermore, the calculated band edge positions in (100), (010) and (001) surfaces indicate that tetragonal AgInS2 is beneficial to the reduction and oxidation of water to hydrogen and oxygen under visible light irradiation.  相似文献   
3.
The Yaozhou kiln complex is a representative production center of ancient northern China, famous for the celadon production. In this work, bubbles, glassy matrix and residual crystals of celadon glazes produced from the Tang to Yuan Dynasty were analyzed by using optical microscopy, Raman spectroscopy and scanning electron microscopy-energy dispersive X-ray spectroscopy (SEM-EDS). The results revealed that the Song, Jin and Yuan productions present bigger bubble and higher area ratios of the Si-O bending over stretching modes than the Tang and Wudai productions. This is consistent with firings at higher temperatures during Song, Jin and Yuan Dynasties. It is also in agreement with the historical studies, which revealed the change from wood-firing to coal-firing during Song Dynasty. The observation of calcium phosphate in Yaozhou productions indicated that the glaze ash had been used. No iron-based particle was identified by Raman spectroscopy in the glazes of all periods. The green color is certainly due to iron ion dispersed in the glassy matrix. Our study also confirmed no significant change in glaze raw materials used for Yaozhou productions from Tang to Yuan Dynasty.  相似文献   
4.
In this work, three dimensional (3D) NixCo1−xS2/graphene composite hydrogels with different Ni contents (denoted as NixCo1−xS2/GH (x = 0, 0.31, 0.56, 0.66, 1)) have been synthesized by a simple one-step hydrothermal method and utilized as the active materials of supercapacitors. The as-prepared samples present a 3D interconnected porous network with the pore sizes in the range of several to tens micrometers. Interestingly, the NixCo1−xS2 particles are uniformly located on the graphene network and the particle size is evolved from ∼50 nm to ∼1.5 μm with the increase of Ni content. The electrochemical measurements revealed that the specific capacitance, rate capability and cyclability of different NixCo1−xS2/GH electrodes are strongly affected by their different Ni content. Among these, the 3D Ni0.31Co0.69S2/GH composite has the highest specific capacitance of 1166 F/g at a current density of 1 A/g. Furthermore, a specific capacitance of 559 F/g can be still maintained at high current density of 20 A/g. After 1000 charge–discharge cycles at 5 A/g, the specific capacitance remains a high value of 755 F/g.  相似文献   
5.
As a figure-of-merit, the rising ratio of crack propagation resistance to fracture initiation resistance indicates a reduction of the brittleness and enhances the thermal shock resistance of ordinary refractory ceramics. The significant nonlinear fracture behaviour is related to the development of a fracture process zone (FPZ). The universal dimensionless load–displacement diagram method is applied as a promising graphical method for the determination of R-curves for magnesia refractories showing different brittleness. By applying digital image correlation (DIC) together with the graphical method, the problems arisen with accurate determination of the fracture initiation resistance and the crack length are overcome. Meanwhile, the R-curve is subdivided with respect to the fracture processes, viz the fracture initiation, the development of FPZ and the onset of traction free macro-crack. With the simultaneous crack lengths evaluated from DIC, the contribution of each fracture process to the crack propagation resistance at certain loading stage is quantitatively presented.  相似文献   
6.
Three-dimensional (3D) highly interconnected graphitized macroporous carbon foam with uniform mesopore walls has been successfully fabricated by a simple and efficient hydrothermal approach using resorcinol and formaldehyde as carbon precursors. The commercially available cheap polyurethane (PU) foam and Pluronic F127 were used as a sacrificial polymer and mesoporous structure-directing templates, respectively. The graphitic structure of carbon foam was obtained by catalytic graphitization method using iron as catalyst. Three different carbon foams such as graphitized macro-mesoporous carbon (GMMC) foam, amorphous macro-mesoporous carbon (AMMC) foam and graphitized macroporous carbon (GMC) foam were fabricated and their physicochemical and mechanical properties were systematically measured and compared. It was found that GMMC possess well interconnected macroporous structure with uniform mesopores located in the macroporous skeletal walls of continuous framework. Besides, GMMC foam possesses a well-defined graphitic framework with high surface area (445 m2/g), high pore volume (0.35 cm3/g), uniform mesopores (3.87 nm), high open porosity (90%), low density (0.30 g/cm3) with good mechanical strength (1.25 MPa) and high electrical conductivity (11 S/cm) which makes it a promising material for many potential applications.  相似文献   
7.
《材料科学技术学报》2019,35(7):1309-1314
Degenerate pattern is a seemingly disordered morphology but it exhibits the inherently ordered crystal connected with tip-splitting and limited stability which makes it difficult to observe in the metallic system. Here we employ (100)[011] orientated planar-front seeds using directional solidification and reveal the fundamental origins of the degenerate pattern growth in an Al-4.5 wt% Cu alloy. We find that the spacing of the tip-splitting (λ) in the degenerate of the alloys followed a power law, λV−0.5, and the frequency (f) of the splitting was related to the growth velocity (V) by ƒ∝V1.5. The dimensionless growth direction (θ/θ0) increased monotonously and approached 0.6 with faster velocity, attributed to its anisotropy in the interface kinetics. Once growth velocity exceeded a threshold, two types of pattern transitions from degenerate to regular dendrites were proposed. One of them exhibited a random and chaotic mode and the other underwent a rotation in growth direction.  相似文献   
8.
《Ceramics International》2020,46(8):11622-11630
In the last decades, the production of ultra-high temperature composites with improved thermo-mechanical properties has attracted much attention. This study focuses on the effect of graphite nano-flakes addition on the microstructure, densification, and thermal characteristics of TiB2–25 vol% SiC composite. The samples were manufactured through spark plasma sintering process under the sintering conditions of 1800 °C/7 min/40 MPa. Scanning electron microscopy images demonstrated a homogenous dispersion of graphite flakes within the TiB2–SiC composite causing a betterment in the densification process. The thermal diffusivity of the specimens was gained via the laser flash technique. The addition of graphite nano-flakes as a dopant in TiB2–SiC did not change the thermal diffusivity. Consequently, the remarkable thermal conductivity of TiB2–SiC remained intact. It seems that the finer grains and more interfaces obstruct the heat flow in TiB2–SiC–graphite composites. Adding a small amount of graphite nano-flakes enhances the densification of the mentioned composite by preventing the grain growth.  相似文献   
9.
This paper discusses the effects of the grinding-induced cyclic heating on the properties of the hardened layer in a plunge cylindrical grinding process on the high strength steel EN26. It was found that a multi-pass grinding brings about a uniform and continuous hardened layer along the circumference of the cylindrical workpiece. An increase of the number of grinding passes, leads to a thicker layer of hardening, a larger compressive residual stress and a deeper plastic deformation zone. Within the plastic deformation zone, the martensitic grains are refined by the thermo-mechanical loading, giving rise to a hardness of 12.5% higher than that from a conventional martensitic transformation. The coupled effects of heat accumulation and wheel wear in the multi-pass grinding are the main causes for the thickening of the hardened layer. A too small infeed per workpiece revolution would result in insufficient grinding heat, and in turn, bring about an undesirable tempered hardened layer and a reduction of its hardness.  相似文献   
10.
ZrB2-SiC coatings with different ZrB2 contents were prepared by liquid phase sintering. The oxidation processes of coatings were explained according to TG results of ZrB2-SiC coatings and powders tested from 298 K to 1773 K. Results show that, increasing ZrB2 content made the weight of the samples changed from weight-loss of 10.04% to weight-gain of 0.14%, while the fastest weight-loss regions were narrowed, whose inflection points reduced from 1310℃ to 1050℃. Increasing ZrB2 content made the relative oxygen permeability of the ZrB2-SiC/SiC coatings reduced from 40%–60% to -10%-5%. Increasing ZrB2 content enhanced high-temperature stability of coatings, making final weight of samples changed from weight-loss of 0.16% to weight-gain of 0.11% after oxidation at 1773 K for 200 h. The peeling and dispersion of Zr-oxides formed Zr-B-Si-O compound glass layer, presenting enhanced stability, dispersion strengthening and pinning effect of Zr-oxides, which were responsible for the excellent anti-oxidation protective effect of coatings in a broad temperature region.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号