首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   21篇
  免费   18篇
化学工业   3篇
金属工艺   11篇
建筑科学   1篇
一般工业技术   1篇
冶金工业   22篇
自动化技术   1篇
  2023年   2篇
  2022年   3篇
  2021年   10篇
  2020年   13篇
  2019年   6篇
  2018年   2篇
  2007年   1篇
  2000年   1篇
  1994年   1篇
排序方式: 共有39条查询结果,搜索用时 31 毫秒
1.
目的 在保证膜层耐蚀性能的前提下,降低镁锂合金等离子电解氧化过程中的能量消耗.方法 分别使用常规NaOH-Na2SiO3电解体系与自研的NaOH-Na2SiO3-Na2B4O7-Na3C6H5O7·2H2O(柠檬酸钠)低能耗电解体系,对LA91型镁锂合金进行等离子电解氧化,并探究其放电过程.采用扫描电子显微镜(SEM)、能谱仪(EDS)、掠入射X射线衍射仪(GIXRD),表征等离子电解氧化膜层的表面形貌、元素组成、物相组成.通过电化学极化曲线、盐雾试验,测试膜层的耐蚀性.结果 使用低能耗体系对镁锂合金进行等离子电解氧化处理,可将膜层的单位体积能耗降低至12.87 kJ/(dm2·μm),节约能耗约50.34%.在两个体系中制备的膜层表面均产生等离子电解氧化的特征性孔洞.低能耗体系膜层孔洞数量较少,但孔洞直径差异较大,孔隙率为14.21%;常规体系膜层孔洞大小均匀,但数量较多,孔隙率为13.93%.两个膜层表面的主要元素均为O、Mg、Na和Si.在低能耗体系中制备的膜层,主要物相为方镁石型MgO,而在常规体系中制备的膜层,物相组成较为复杂.盐雾试验和电化学极化曲线结果显示,在两种体系中进行等离子电解氧化,均能提升镁锂合金的耐蚀性.低能耗等离子氧化处理后,镁锂合金的腐蚀电流密度降低约3个数量级,腐蚀速率降低约2个数量级,自腐蚀电位正移0.261 V,有效地提升了镁锂合金的耐蚀性,并且耐蚀性的提升程度要优于常规体系.结论 使用低能耗体系电解液进行等离子电解氧化,能够形成孔洞特征不同于常规体系的等离子电解氧化膜层.与常规体系下制备的膜层相比,其厚度、孔隙率并无较大差异,但能够在节约较多能耗的情况下制备出耐蚀性能更好的等离子电解氧化膜层.  相似文献   
2.
通过对比试验,从样品前处理、测定结果等方面对直读光谱法(OES)与电感耦合等离子体发射光谱法(ICP-OES)进行分析。结果表明,两种方法无显著差异,OES的前处理更简单,检测速度更快,但对样品大小、形状要求较高,无法对直径过小的钢铁样品进行检测,而ICP-OES更符合对不同形状钢铁的检测需求。  相似文献   
3.
锡铅焊料中的杂质元素对焊点的抗氧化性、润湿性、扩展面积有重要影响,因此对其进行测定意义重大。采用硝酸、氢氟酸溶解样品,选择H2动态反应池模式测定Fe,标准模式测定Al、P、Cu、Zn、As、Cd、Ag、Sb、Au、Bi,同时以Sc校正Al、P、Fe、Cu,以Cs校正Zn、As、Ag、Cd,以Tl校正Sb、Au、Bi,实现了电感耦合等离子体质谱法(ICP-MS)对锡铅焊料中这11种杂质元素含量的测定。在优化的实验条件下,11种杂质元素校准曲线的相关系数均大于0.999,方法的检出限在0.002~0.80μg/g范围内,测定下限在0.007~2.73μg/g范围内。用建立的实验方法测定锡铅焊料样品中Al、P、Fe、Cu、Zn、As、Cd、Ag、Sb、Au、Bi,平行测定11次结果的相对标准偏差(RSD)为0.85%~3.5%,加标回收率为90%~110%。将实验方法应用于锡铅焊料标准物质YT9302中Al、Fe、Cu、Zn、As、Sb、Bi共7种杂质元素的测定,结果与认定值一致。  相似文献   
4.
锂硼合金中锂元素的含量对电池的电化学性能起着决定性作用。而使用重量法测定锂时,流程较长,且大量共存的硼干扰锂的测定。试验探究了先使用甲醇除硼再采用硫酸锂重量法测定锂硼合金中锂的方法。样品经稀硝酸溶解后,加入2.0mL无水甲醇,于90℃左右恒温水浴锅中挥发除硼,然后加入2.0mL硫酸(1+1)和少量水溶解盐类,转移至铂坩埚中,高温加热至硫酸烟冒尽,将铂坩埚移入800℃马弗炉中灼烧3h,使锂生成硫酸锂并恒重、称量,并用电感耦合等离子体原子发射光谱法(ICP-AES)测定固体中的氧化硼和硫酸镁的含量以修正测定结果。方法用于测定3种锂硼合金实际样品中锂,结果的相对标准偏差(RSD,n=11)为0.34%~0.56%;加标回收率为98%~103%。  相似文献   
5.
铝锰合金是炼钢用的元素添加剂和脱氧剂,对其中锰含量的准确测定能够更好地控制其产品质量。试料用王水溶解,在热的浓磷酸介质中,用高氯酸将锰(Ⅱ)氧化到锰(Ⅲ),以N-苯代氨基苯甲酸为指示剂,用硫酸亚铁铵标准溶液滴定锰(Ⅲ)至锰(Ⅱ),溶液颜色由紫色变为亮黄色,记为终点,建立了硫酸亚铁铵滴定法测定铝锰合金中锰的方法。在pH 6.0~7.0的焦磷酸钠介质中,采用复合式铂电极,用高锰酸钾标准溶液缓慢滴至电位突跃记为终点,建立了高锰酸钾电位滴定法测定铝锰合金中锰的方法。铝锰合金中常见的杂质元素铬、铜、铁、镁、钛、镍、硼、硅对两种方法的测定结果影响较小,可忽略。若存在钒和铈,在硫酸亚铁滴定法中需进行校正扣除。将两种方法用于铝锰合金样品分析,硫酸亚铁铵滴定法的相对标准偏差(RSD,n=11)为0.36%~0.50%,加标回收率为99.2%~100.8%。高锰酸钾电位滴定法的相对标准偏差(RSD,n=11)为0.39%~0.68%,加标回收率为99.2%~100.7%。选取AlMn20合金,采用标准方法GB/T 20975.7—2020进行方法验证,用F检验和t检验确定了两种方法都与标准方法有较好的一致性。  相似文献   
6.
硫的存在会导致集成电路用高纯铜硬度增加,进而影响铜布线的性能,因此准确测定高纯铜中痕量硫,对高纯铜生产工艺控制具有重要意义。用标准样品校准仪器相对灵敏度因子,实现了直流辉光放电质谱法(DC-GDMS)对高纯铜中痕量硫的测定。对放电参数进行了优化,确定放电电流为2.0 mA,放电电压为1 200 V,预溅射时间为20 min。实验表明,在优化的条件下,仪器分辨率可达3 000以上,以32S为待测同位素,可以避开硫各同位素附近离子团的干扰。通过对仪器稳定性进行统计,内部重复性相对标准偏差RSD%为4.3%,外部重复性相对标准偏差RSD%为6.8%。在优化后的工作条件下,方法检出限可达0.005 μg/g。用t检验法评价方法准确性,两个高纯铜标样的t值计算结果分别为0.98、1.13,在95%置信概率下,查单侧t检验表为1.94,t计算均小于t0.05,6,说明检测结果与标示值无显著差异。与高频燃烧红外吸收法测定值进行比较,通过双侧t检验,t计算小于t0.05,12,说明两种方法测定结果无显著差异。按照实验方法对低硫样品3#、4#进行测定,结果的相对标准偏差(RSD)小于20%。不确定度评定结果表明,标准样品不确定度是影响测定结果准确性的主要因素。  相似文献   
7.
The Young's modulus, thermal expansion coefficient and fracture behavior of different ceramic phases in the Si–B–C system have been determined from room temperature up to 1200 °C using results of tests performed on matrix-dominated carbon fiber reinforced microcomposites by means of a specific high temperature testing apparatus. Results have shown that the boron-rich materials had higher stresses to failure and thermal expansion coefficients than silicon-rich materials whereas all the boron containing materials exhibited a viscoplastic time-dependant mechanical behavior over 1000 °C. The thermoelastic values of the Si–B–C based carbides thus obtained have been used to compute thermal residual stresses in model composite systems, in view of understanding some results reported in the literature regarding the implantation of layered matrices in ceramic matrix composites.  相似文献   
8.
采用扫描电镜、背散射电子衍射对比分析了不同烧结工艺制备的高纯钌靶的晶粒尺寸,孔隙分布和取向分布等组织特征。结果表明,随着烧结温度的提高,烧结进程加快,靶材的孔隙度显著减少,晶粒长大,晶粒发生显著孪生,晶体取向有{0001}晶面平行于表面的择优趋势。烧结机制主要为扩散作用下的烧结颈扩大和微孔收缩聚合;当温度较高时,高温变形是钌靶烧结的重要机制,尤其是孪生变形,而触发的孪生系多为94.8°/{10-12}。  相似文献   
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号