首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6777篇
  免费   1076篇
  国内免费   338篇
电工技术   476篇
综合类   380篇
化学工业   529篇
金属工艺   897篇
机械仪表   1264篇
建筑科学   134篇
矿业工程   17篇
能源动力   264篇
轻工业   21篇
水利工程   16篇
石油天然气   6篇
武器工业   107篇
无线电   1066篇
一般工业技术   1228篇
冶金工业   62篇
原子能技术   45篇
自动化技术   1679篇
  2024年   6篇
  2023年   132篇
  2022年   202篇
  2021年   234篇
  2020年   296篇
  2019年   177篇
  2018年   171篇
  2017年   293篇
  2016年   343篇
  2015年   326篇
  2014年   496篇
  2013年   668篇
  2012年   1188篇
  2011年   1085篇
  2010年   412篇
  2009年   441篇
  2008年   234篇
  2007年   502篇
  2006年   445篇
  2005年   159篇
  2004年   68篇
  2003年   56篇
  2002年   71篇
  2001年   39篇
  2000年   31篇
  1999年   42篇
  1998年   6篇
  1997年   4篇
  1996年   10篇
  1995年   8篇
  1994年   12篇
  1993年   13篇
  1992年   7篇
  1991年   6篇
  1990年   5篇
  1989年   2篇
  1979年   1篇
排序方式: 共有8191条查询结果,搜索用时 15 毫秒
1.
Machine learning algorithms have been widely used in mine fault diagnosis. The correct selection of the suitable algorithms is the key factor that affects the fault diagnosis. However, the impact of machine learning algorithms on the prediction performance of mine fault diagnosis models has not been fully evaluated. In this study, the windage alteration faults (WAFs) diagnosis models, which are based on K-nearest neighbor algorithm (KNN), multi-layer perceptron (MLP), support vector machine (SVM), and decision tree (DT), are constructed. Furthermore, the applicability of these four algorithms in the WAFs diagnosis is explored by a T-type ventilation network simulation experiment and the field empirical application research of Jinchuan No. 2 mine. The accuracy of the fault location diagnosis for the four models in both networks was 100%. In the simulation experiment, the mean absolute percentage error (MAPE) between the predicted values and the real values of the fault volume of the four models was 0.59%, 97.26%, 123.61%, and 8.78%, respectively. The MAPE for the field empirical application was 3.94%, 52.40%, 25.25%, and 7.15%, respectively. The results of the comprehensive evaluation of the fault location and fault volume diagnosis tests showed that the KNN model is the most suitable algorithm for the WAFs diagnosis, whereas the prediction performance of the DT model was the second-best. This study realizes the intelligent diagnosis of WAFs, and provides technical support for the realization of intelligent ventilation.  相似文献   
2.
《Ceramics International》2022,48(24):36860-36870
For the advantages of high-temperature resistance, corrosion resistance and ultra-high hardness, SiCf/SiC composite is becoming a preferred material for manufacturing aero-engine parts. However, the anisotropy and heterogeneity bring great challenges to the processing technology. In this study, a nanosecond pulsed laser is applied to process SiCf/SiC composite, where the influence of the scanning speed and laser scanning direction to the SiC fibers on the morphology of ablated grooves is investigated. The surface characteristics after ablation and the involved chemical reaction of SiCf/SiC are explored. The results show that the increased laser scanning speed, accompanied by the decreasing spot overlap rate, leads to the less accumulation of energy on the material surface, so the ablation effect drops. In addition, for the anisotropy of the SiCf/SiC material, the obtained surface characteristics are closely dependent on the laser scanning direction to the SiC fibers, resulting in different groove morphology. The element composition and phase analysis of the machined surface indicate that the main deposited product is SiO2 and the carbon substance. The results can provide preliminary technical support for controlling the machining quality of ceramic matrix composites.  相似文献   
3.
《Ceramics International》2022,48(1):744-753
The heat-resistance of the Cansas-II SiC/CVI-SiC mini-composites with a PyC and BN interface was studied in detail. The interfacial shear strength of the SiC/PyC/SiC mini-composites decreased from 15 MPa to 3 MPa after the heat treatment at 1500 °C for 50 h, while that of the SiC/BN/SiC mini-composites decreased from 248 MPa to 1 MPa, which could be mainly attributed to the improvement of the crystallization degree of the interface and the decomposition of the matrix. Aside from the above reasons, the larger declined fraction of the interfacial shear strength of the SiC/BN/SiC mini-composites might also be related to the gaps in the BN interface induced by the volatilization of B2O3·SiO2 phase, leading to a significant larger declined fraction of the tensile strength of the SiC/BN/SiC mini-composites due to the obvious expansion of the critical flaws on the fiber surface. Therefore, compared with the CVI BN interface, the CVI PyC interface has better heat-resistance at high temperatures up to 1500 °C due to the fewer impurities in PyC.  相似文献   
4.
Low-dimensional carbon nanostructures are ideal nanofillers to reinforce the mechanical performance of polymer nanocomposites due to their excellent mechanical properties. Through molecular dynamics simulations, the mechanical performance of poly(vinyl alchohol) (PVA) nanocomposites reinforced with a single-layer diamond – diamane is investigated. It is found the PVA/diamane exhibits similar interfacial strengths and pull-out characteristics with the PVA/bilayer-graphene counterpart. Specifically, when the nanofiller is fully embedded in the nanocomposite, it is unable to deform simultaneously with the PVA matrix due to the weak interfacial load transfer efficiency, thus the enhancement effect is not significant. In comparison, diamane can effectively promote the tensile properties of the nanocomposite when it has a laminated structure as it deforms simultaneously with the matrix. With this configuration, the interlayer sp3 bonds endows diamane with a much higher resistance under compression and shear tests, thus the nanocomposite can reach very high compressive and shear stress. Overall, enhancement on the mechanical interlocking at the interface as triggered by surface functionalization is only effective for the fully embedded nanofiller. This work provides a fundamental understanding of the mechanical properties of PVA nanocomposites reinforced by diamane, which can shed lights on the design and preparation of next generation high-performance nanocomposites.  相似文献   
5.
In practical applications of structural health monitoring technology, a large number of distributed sensors are usually adopted to monitor the big dimension structures and different kinds of damage. The monitored structures are usually divided into different sub-structures and monitored by different sensor sets. Under this situation, how to manage the distributed sensor set and fuse different methods to obtain a fast and accurate evaluation result is an important problem to be addressed deeply. In the paper, a multi-agent fusion and coordination system is presented to deal with the damage identification for the strain distribution and joint failure in the large structure. Firstly, the monitoring system is adopted to distributedly monitor two kinds of damages, and it self-judges whether the static load happens in the monitored sub-region, and focuses on the static load on the sub-region boundary to obtain the sensor network information with blackboard model. Then, the improved contract net protocol is used to dynamically distribute the damage evaluation module for monitoring two kinds of damage uninterruptedly. Lastly, a reliable assessment for the whole structure is given by combing various heterogeneous classifiers strengths with voting-based fusion. The proposed multi-agent system is illustrated through a large aerospace aluminum plate structure experiment. The result shows that the method can significantly improve the monitoring performance for the large-scale structure.  相似文献   
6.
Environmental problems brought by industry are attracting extensive attention so a comprehensive analysis of industrial environmental performance is increasingly important. However, the comparison of industrial sector efficiencies is complicated by the fact that the natural resources consumed and/or the pollutants discharged by each sector may differ. In this paper, we extend the DEA model to consider two-sided non-homogeneous problems, handling DMU sets that have non-homogeneity in both inputs and outputs. This is different from the previous researches which generally focus on regional data to avoid non-homogeneity. Today environmental reform and energy conservation in various industrial sectors are both parts of the basic state policy of China. The empirical results show that: (1) Sectors' efficiencies are still low and unbalanced. The Recycling and Disposal of Waste department achieves the best energy saving and emission reduction efficiency. (2) 38 sectors can be clustered into four groups and set new benchmark in each group. (3) The overall efficiency of 38 industrial sectors in China maintained a rising trend in five years. With this more realistic analysis of environmental efficiency, the Chinese government can make more informed decisions to realize sustainable industrial development.  相似文献   
7.
针对不同重力环境下仿壁虎机器人的运动稳定性、运动高效协调性等问题,基于四足机器人的步态规划现状和仿壁虎机器人自身特定的机械结构,设计了仿壁虎机器人在g、0、-g 3种环境下的足端轨迹和运动步态。在ADAMS仿真软件中研究了机器人的运动学和动力学特性,得到了仿壁虎机器人稳定爬行与脚掌黏附力、足端轨迹和运动步态的关系。探讨了仿真结果的合理性和局限性,为仿壁虎机器人在实际环境中的稳定运动奠定了理论基础。  相似文献   
8.
This paper introduces the potential feasibility that ELID (electrolytic in-process dressing) grinding replaces superfinishing in bearing manufacturing, but ELID grinding will bring new challenges. Different regions present distinguish surface profile due to the non-uniform contact in ELID groove grinding. However, few reports explaining the non-uniform contact are available. This article explores the mechanisms of the non-uniform contact during ELID groove grinding. Experiments on the non-uniform contact between bearing raceway and grinding wheel have been carried out under different conditions. The results show that non-uniform contact exists in ELID groove grinding process and it exerts influence on the profile of the raceway surface. Non-uniform contact influences the Rsk and Rku value all the time, but it influences the Ra value occasionally. Improvement strategies of eliminating the non-uniform contact are also discussed based on the experimental study.  相似文献   
9.
《Ceramics International》2020,46(13):21196-21201
In this work, TiO2/ZrO2 bilayer thin film was prepared on fluorine doped tin oxide (FTO)/glass substrates by using a simple and low-cost chemical solution deposition method. Reproducible bipolar resistive switching (RS) characteristics in Au/TiO2/ZrO2/FTO/glass devices are reported in this work. TiO2/ZrO2 bilayer thin films prepared in this work shows reversible bipolar resistive switching and unidirectional conduction performances under applying voltage and these special performances of TiO2/ZrO2 bilayer thin films was first reported. Obvious resistive switching performance can be observed after setting a compliance current, the ratio of high/low resistance reached about 100 at a read voltage of +0.1V and −0.1V and the RS properties showed no obvious degradation after 100 successive cycles tests. The resistive switching characteristics of Au/TiO2/ZrO2/FTO/glass device can be explained by electron trapping/detrapping related with the vacancy oxygen defects in TiO2/ZrO2 bilayer thin film layer. According to slope fitting, the main conduction mechanisms of the sample are Ohmic and Space charge limited current mechanism.  相似文献   
10.
Most of the reported studies on the optimization of grinding parameters do not consider the evolution of the surface topography of grinding wheels, and the established empirical models will no longer apply when the surface conditions of the grinding wheel changes. In this paper, an integrated model based on the surface topography of grinding wheel is established. The grinding process of cemented carbide is simulated using the established model, and the simulation results are analyzed to obtain the surface roughness model and the specific grinding energy model based on the undeformed chip thickness distribution. Subsequently, the grinding constraint models are defined according to the two grinding constraints—surface roughness and specific grinding energy. Through inversion analysis, the maximum material removal rate of the given grinding wheel surface conditions satisfying the defined grinding constraints are obtained, and the influence rules of the grinding wheel surface conditions on the maximum material removal rate are analyzed. Then the grinding wheel surface conditions are adjusted by changing the radial dressed height of the grinding wheel and the arrangement distance of the grains in wheel circumferential direction to improve the maximum material removal rate of the grinding wheel. Finally, the optimization results are verified through grinding tests of cemented carbide.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号