首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   440篇
  免费   29篇
  国内免费   15篇
电工技术   1篇
综合类   3篇
化学工业   123篇
金属工艺   146篇
机械仪表   9篇
矿业工程   4篇
能源动力   51篇
轻工业   1篇
水利工程   1篇
石油天然气   1篇
武器工业   1篇
无线电   14篇
一般工业技术   96篇
冶金工业   23篇
原子能技术   2篇
自动化技术   8篇
  2024年   2篇
  2023年   44篇
  2022年   34篇
  2021年   22篇
  2020年   50篇
  2019年   44篇
  2018年   14篇
  2017年   20篇
  2016年   16篇
  2015年   14篇
  2014年   26篇
  2013年   27篇
  2012年   35篇
  2011年   19篇
  2010年   12篇
  2009年   18篇
  2008年   8篇
  2007年   6篇
  2006年   10篇
  2005年   9篇
  2004年   6篇
  2003年   4篇
  2002年   8篇
  2001年   5篇
  2000年   3篇
  1999年   7篇
  1998年   2篇
  1997年   3篇
  1996年   3篇
  1994年   1篇
  1993年   1篇
  1992年   2篇
  1991年   4篇
  1990年   1篇
  1989年   2篇
  1988年   2篇
排序方式: 共有484条查询结果,搜索用时 31 毫秒
1.
Fe2O3 nanorod/carbon nanofiber (CNF) composites were prepared by the electrochemical deposition of Fe2O3 on a web of CNFs, which was then used as a free-standing anode. The conductive, three-dimensional structure of the CNF web allowed for the electrodeposition of the Fe2O3 nanorods, while its high conductivity made it possible to use the composite as a free-standing electrode in lithium-ion batteries. In addition, it was easy and cheap to fabricate by a simplification of a process of cell preparation. The nanorod-like Fe2O3 structures could only be electrodeposited on the CNFs; flake-like Fe2O3 was formed on flat conductive glass substrates. It can be attributed to the different growth mechanism of Fe2O3 on the CNFs because of the large number of reaction sites on the CNFs, differences in the precursor concentration and diffusivity within the CNF web. The formation of aggregates of the Fe2O3 particles on thicker CNFs also indicated that the CNFs had determined the Fe2O3 growth mechanism. The synthesised Fe2O3/CNF composite electrode exhibited stable rate capacities at different current densities. This suggested that CNF-based composite did not exhibit the intrinsic disadvantages of Fe2O3. Finally, carbon coatings were deposited on the Fe2O3/CNF composites to further improve their electronic conductivity and rate capability.  相似文献   
2.
Oxygen reduction reaction(ORR) plays a critical role in many energy conversion and storage processes.Therein, a comparative study of the electrocatalytic activity for ORR in 0.1 mol/L KOH solution was conducted using layered perovskite-like LaSr_3 Fe_3 O_(10) and LaSr3 Fe_3 O_(10)-graphene oxide(GO) composite as electrodes. Linear sweep voltammetry(LSV) results show that the LaSr3 Fe_3 O_(10)-GO hybrid exhibits higher current density, a more positive onset potential(-0.15 V vs. Hg/HgO) in comparison with LaSr_3 Fe_3 O_(10).The value of the overall transferred electrons for both catalysts implies a dominant two electron process for ORR. Both catalysts under alkalic conditions exhibit a two-step Tafel slope, suggesting a change in the reaction mechanism for ORR. The composite electrode exhibits a higher ORR current density, but inferior durability performances in relative to the LaSr_3 Fe_3 O_(10) electrode.  相似文献   
3.
《Ceramics International》2022,48(11):15268-15273
SiC/SiC mini-composites reinforced with SiC fibers coated with different numbers of ZrSiO4 sublayers prepared via a non-hydrolytic sol-gel process were fabricated. The tensile strength and work of fracture of the prepared SiC/SiC mini-composites were determined, and the relationship between their mechanical properties and fracture morphologies was discussed. The toughening mechanism and the variation tendency of their mechanical properties were further elaborated by analyzing the interfacial debonding morphologies of the SiC/SiC mini-composites with 1 and 4 layers of ZrSiO4 interphase as well as the results of prior studies. A relatively rare phenomenon—the delamination of the multilayer ZrSiO4 interphase in the SiC/SiC mini-composites but not on the SiC fibers—was observed, which clearly demonstrated the weak bonding between the ZrSiO4 sublayers in the SiC/SiC mini-composites. The ZrSiO4 sublayer delamination mechanism was then explained based on the high-magnification morphologies found in and beside the ZrSiO4 interphase.  相似文献   
4.
《Ceramics International》2020,46(11):18698-18706
Three different kinds of thermal barrier coatings (TBCs) — 8YSZ, 38YSZ and a dual-layered (DL) TBCs with pure Y2O3 on the top of 8YSZ were produced on nickel-based superalloy substrate by air plasma spraying (APS). The Calcium–Magnesium–Aluminum-Silicate (CMAS) corrosion resistance of these three kinds of coatings were researched via burner rig test at 1350 °C for different durations. The microstructures and phase compositions of the coatings were characterized by SEM, EDS and XRD. With the increase of Y content, TBCs exhibit better performance against CMAS corrosion. The corrosion resistance against CMAS of different TBCs in descending was 8YSZ + Y2O3, 38YSZ and 8YSZ, respectively. YSZ diffused from TBCs into the CMAS, and formed Y-lean ZrO2 in TBCs because of the higher diffusion rate and solubility of Y3+ in CMAS than Zr4+. At the same time, 38YSZ/8YSZ + Y2O3 reacts with CAMS to form Ca4Y6(SiO4)6O/Y4·67(SiO4)3O with dense structure, which can prevent further infiltration of CMAS. The failure of 8YSZ coatings occurred at the interface between the ceramic coating and the thermally grown oxide scale (TGO)/bond coating. During the burner rig test, the Y2O3 layer of the DL TBCs peeled off progressively and the 8YSZ layer exposed gradually. DL coatings keep roughly intact and did not meet the failure criteria after 3 h test. 38YSZ coating was partially ablated, the overall thickness of the coating is thinned simultaneously after 2 h. Therefore, 8YSZ + Y2O3 dual-layered coating is expected to be a CMAS corrosion-resistant TBC with practical properties.  相似文献   
5.
Copper indium disulfide (CuInS2) thin films as an absorption layer for solar cell and photocatalytic degradation of organic pollutants, were successfully electrodeposited on the FTO coated glass substrate using the simple and inexpensive electrodeposition method and a sulfurization process. The effects of the Cu/In molar ratio, annealing temperature and kind of Cu2+ precursor (Cu(salen) and Cu(acac)2 as novel Cu2+ precursors) on the structural and morphological properties of samples were examined. The XRD diffraction patterns and energy dispersive spectroscopy measurements exhibit that high-quality film with superior crystalline structure was formed in the presence of Cu(salen) as Cu2+ precursor. Also, we found that a suitable heat treatment temperature could suppress the CuS phases and form well-crystallized CIS. As we know, this is the first reported efficiency for any CuInS2 superstrate solar cell to date that fabricated using Cu(salen) as Cu2+ precursor. In addition, the photocatalytic degradation of organic dye in the presence of as-synthesized CuInS2 thin films was studied. The as-prepared semiconductor photocatalysts have a good reusability; it can be successfully reused for 5 times recycling photoactivity tests.  相似文献   
6.
以硅渣和玻璃粉为原料,采用粉体直接烧结法制备多孔材料,研究了烧结温度(700~900℃)、烧结时间(15~120min)和升温速率(10~100℃·min^-1)对多孔材料表观密度、气孔率、物相组成、抗压强度的影响。结果表明:气孔结构均匀性随烧结温度的升高而降低;表观密度随烧结温度的升高先减小后增大,随保温时间的延长而增大,随升温速率的增大而减小,气孔率的变化趋势与表观密度的相反;多孔材料的主要物相为玻璃相和硅、SiC、SiO2、Ca2Al2SiO7等结晶相,且结晶度随烧结温度的升高而降低;抗压强度随烧结温度的升高呈先增大后减小的趋势;当烧结温度为750℃,升温速率为30℃·min^-1,烧结时间为30 min时,多孔材料的主晶相为硅和Ca2Al2SiO7,抗压强度最大(1.60MPa),表观密度为0.43g·cm^-3,气孔率为80%。  相似文献   
7.
This paper summarizes the preliminary results obtained from lithium electrochemical intercalation into boron-doped diamond films grown on carbon felt (BDD/CF electrode). BDD films have been grown by Hot Filaments Chemical Vapor Deposition (HFCVD) and have been characterized by Scanning Electron Microscopy (SEM) and Raman Scattering spectroscopy. BDD/CF composite electrodes, which contain a diamond layer, lead to higher conductivity and smaller grain sizes. In turn, they are richer in boundary or sp2 sites, and present a reversible specific capacity that is much larger than that of the substrate alone, indicating that the diamond layer effectively participates in lithium storage. Diamond layers displaying boron doping levels of 1019 and 1021 part cm 3 provide a specific capacity of 160 and 370 mA h g 1, respectively, which is associated with lithium storage.  相似文献   
8.
以异佛尔酮二异氰酸酯(IPDI)和双(2–羟基乙基)二硫醚(DTBO)为硬段,聚四氢呋喃(PTMG)为软段,β–巯基乙醇(ME)为封端剂,制备巯基封端且含双硫键的聚氨酯(PUR)预聚物,利用巯基易氧化的特点,用H2O2/NaI进行氧化,合成分子链内和分子链端均含有双硫键的自修复交联PUR。采用傅立叶变换红外光谱仪、差示扫描量热仪、热重/差热综合热分析仪和电子拉力试验机等手段,研究了PUR的结构及PTMG与ME的物质的量之比对PUR热性能、力学性能和自修复性能的影响。结果表明,合成的系列交联PUR都具有一定的自修复能力和良好的热性能,当DTBO和PTMG物质的量分数分别为总二元醇的40%和60%时,PUR的拉伸强度达到最大值,为2.6 MPa,在60℃热处理8 h条件的自修复率为80.8%,且该试样经三次自修复后,自修复率仍可达到50.0%。  相似文献   
9.
陈乐平  张剑平  艾云龙 《铸造技术》2007,28(9):1217-1220
以ZM5镁合金为基体材料,以富Y重稀土为添加原料,应用铸造方法制备了稀土镁合金。利用光学金相显微镜(OM)、X衍射分析、拉伸试验和腐蚀试验等方法,考察分析了稀土Y对ZM5合金铸造组织结构、力学性能和腐蚀性能的影响。结果表明,铸态合金中出现了新相Al3La、MgY,它对于减少晶界处第2相的析出、晶粒的细化以及力学性能的提高起着积极作用。同时,稀土的加入明显地改善了合金的腐蚀性能。  相似文献   
10.
《材料科学技术学报》2019,35(8):1797-1802
A new insight into the promotion action of Co2+ on both particle and metal deposition in Ni-diamond composite electrodeposition system was analyzed according to electrochemical measurements. The results showed that the addition of Co2+ made particles content in deposits increased remarkably. The change of particles content in deposits was related inversely to the change of cathodic zero potential with the increase of the concentration of cobalt sulfate. Zero charge potential of cathode was shifted to much more negative region. The negative shift of the zero potential, combining with positive shift of the zeta potential, increased the electrostatic force between the particle-adsorbed metallic cations and the cathode. It not only benefits to the transportation of particles in solution towards cathode, but also shortens their residence time on cathodic surface. Meanwhile, entry of particles is also promoted. For metals deposition, reduction resistance of metallic cations rises greatly and deposition current at cathodic potentiodynamic polarization decreases after cobalt sulfate has been added into electrolyte. These factors are favorable for increasing particles content in deposits. In addition, physical model of diamond particles deposition state before and after the addition of Co2+ has been discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号