首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   134篇
  免费   10篇
  国内免费   2篇
化学工业   12篇
金属工艺   67篇
机械仪表   24篇
建筑科学   2篇
矿业工程   1篇
能源动力   7篇
轻工业   2篇
石油天然气   1篇
武器工业   1篇
无线电   3篇
一般工业技术   15篇
冶金工业   3篇
自动化技术   8篇
  2024年   3篇
  2023年   16篇
  2022年   20篇
  2021年   13篇
  2020年   18篇
  2019年   8篇
  2018年   5篇
  2017年   10篇
  2016年   3篇
  2015年   5篇
  2014年   2篇
  2013年   5篇
  2012年   6篇
  2010年   8篇
  2009年   7篇
  2008年   1篇
  2007年   1篇
  2006年   3篇
  2005年   1篇
  2004年   1篇
  2003年   1篇
  2002年   1篇
  2001年   2篇
  1993年   1篇
  1992年   1篇
  1990年   1篇
  1989年   1篇
  1988年   2篇
排序方式: 共有146条查询结果,搜索用时 15 毫秒
1.
The purpose of the present work was to compare the cutting action of two different abrasive-grain geometries using experimental observations and a validated finite element model. A spherical tool was used to approximate a dull abrasive grain while a truncated cone tool was used to approximate an abrasive grain with a well defined cutting edge. The selected geometries were chosen to represent extreme cases in order to bracket the cutting action of a range of cutting geometries. The results showed that both tools produced similar normal and tangential forces per unit width up to a depth of cut of approximately 3 μm. The improved cutting geometry of the truncated cone tool caused the normal force per unit width to decrease and the tangential force per unit width to increase in relation to the spherical tool. The truncated cone tool was shown to experimentally and numerically be more efficient based on the reduced pile-up heights and improved stress distributions. It was also shown that both geometries converged towards the same specific energy to displace material at suitably large depths of cut, which suggests that there is a minimum specific energy obtainable for a given workpiece material that is independent of the grain geometry. However, specific energies to remove material were higher for the spherical tool as compared to the truncated cone tool. Analysis of the energy components of the finite element model showed that frictional energy contributions were high with the spherical tool and low with the truncated cone tool. Finally, it was found that both tools required approximately the same energy to shear a chip from a workpiece when friction was subtracted from the specific energy for material removal.  相似文献   
2.
This study focuses on the accurate tracking control and sensorless estimation of external force disturbances on robot manipulators. The proposed approach is based on an adaptive Wavelet Neural Network (WNN), named Adaptive Force-Environment Estimator (WNN-AFEE). Unlike disturbance observers, WNN_AFEE does not require the inverse of the Jacobian transpose for computing the force, thus, it has no computational problem near singular points. In this scheme, WNN estimates the external force disturbance to attenuate its effects on the control system performance by estimating the environment model. A Lyapunov based design is presented to determine adaptive laws for tuning WNN parameters. Another advantage of the proposed approach is that it can estimate the force even when there are some parametric uncertainties in the robot model, because an additional adaptive law is designed to estimate the robot parameters. In a theorem, the stability of the closed loop system is proved and a general condition is presented for identifying the force and robot parameters. Some suggestions are provided for improving the estimation and control performance. Then, a WNN-AFEE is designed for a planar manipulator as an example, and some simulations are performed for different conditions. WNN_AFEE results are compared attentively with the results of an adaptive force estimator and a disturbance estimator. These comparisons show the efficiency of the proposed controller in dealing with different conditions.  相似文献   
3.
宋鹏芳  姜芙林  王玉玲  王冉 《表面技术》2021,50(1):242-252, 286
激光熔覆具有加热和冷却速度快、稀释度低(<5%)、热影响区小以及可以对表面性质进行精准调整等优点,是当今工业应用较为广泛的表面改性技术之一.利用激光熔覆技术制备高熵合金涂层,既能保证涂层具有简单的相结构和优异的性能,又可使涂层与基体之间获得良好的冶金结合.主要对激光熔覆制备高熵合金涂层的设计准则、性能及提高机理、凝固行为以及数值模拟的研究进行阐述.首先从设计理论方面对高熵合金进行概念阐述,由熵和吉布斯自由能可知,通过增加主元(至少5个)和位形熵来设计元素组成,通过吉布斯自由能控制相的稳定性.其次,对涂层的性能提高机理分类总结,其中高熵合金的四大效应与激光熔覆快冷快热的特点相结合是涂层性能提高的主要原因.此外,还阐述了激光熔覆过程中熔池的凝固行为,包括凝固过程中的晶粒生长方式和液相分离现象,以及其他因素引起的凝固行为变化.之后,对粉末流动特性、熔池温度场和熔覆层性能的数值模拟以及这些模型的缺陷进行综述与分析.最后,总结与展望激光熔覆制备高熵合金涂层研究的发展前景与应用方向.  相似文献   
4.
王涛  王优强  王建  范晓梦 《表面技术》2016,45(10):89-95
目的研究含水润滑油对轧机油膜轴承的摩擦学性能的影响。方法选取轧机油膜轴承为研究对象,利用油水两相流体数学模型和弹流润滑方程研究轧机油膜轴承在等温条件下的润滑特性,分析油水两相流体润滑膜的压力、膜厚分别随含水率、滑滚比、轴颈间隙、主轴转速和轧制力的变化关系。结果水介入润滑油之后,随着含水率的增加,油水两相流体的黏度先增加,在含水率为30%左右时达到最大值(0.08 Pa·s),之后又迅速减小,直至接近于纯水的黏度(0.001 Pa·s)。当含水率为30%时,无量纲膜厚达到最大值(0.82),当含水率为90%时,无量纲膜厚达到最小值(0.68)。结论随着含水率的增加,油水两相流体由油包水流型转化为水包油流型,压力变化不大,膜厚先增加后减小,作为润滑剂,油包水流型比水包油流型具有更好的润滑性能,且在流型转变点处的润滑性能最优。随着滑滚比和轧机油膜轴承主轴转速的增加,压力减小,承载能力减弱,膜厚增加,润滑性能增强。随着轴颈间隙和外部轧制力的增加,压力增加,承载能力增强,膜厚减小,润滑性能减弱。  相似文献   
5.
目的 解决目前油水分离材料大多存在的制备工艺复杂、设备昂贵、分离效率低、重复使用性差等问题。方法 采用水热法在镍网表面生长分支化羟基氟化锌(ZnOHF)粗糙结构,随后在表面沉积十八烷基三甲氧基硅烷(ODS)分子,得到超疏水/超亲油镍网。利用扫描电子显微镜(SEM)、X射线衍射仪(XRD)和傅里叶变换红外光谱仪(FT–IR)对其表面的微观形貌、组织和表面成分进行表征,利用接触角测量仪表征其静态和动态润湿性能。结果 镍网表面生长的分支化ZnOHF粗糙结构,与低表面能的ODS单分子层协同作用,使该表面对水的接触角高达158°,对油的接触角则为0°,且连续滴加油品时,油会在表面迅速铺展、渗透,并向下滴落。将不同品类的油与水混合,模拟不同情况下的油水分离效果,其分离效率均在95%以上;经过50次重复的油水分离测试后,其油水分离效率仍能保持91%,表现出良好的重复使用性能。结论 实验制备的超疏水/超亲油镍网具有制备方法简单、成本低廉、高效耐用等优点,为含油废水的处理提供了新方法。  相似文献   
6.
This work studied the development of vegetable based lubricants and the addition of oxides nanoparticles (ZnO and CuO) as additive for extreme pressure (EP), exploring the EP and oil base influence in tribological behavior. The results showed that with the addition of nanoparticles to conventional lubricant, the tribological properties can be significantly improved. A smoother and more compact tribofilm has formed on the worn surface, which is responsible for the further reduced friction and wear. Also, lubricants developed from modified vegetable oil can replace mineral oil, improving the tribological and environmental characteristics. However, the addition of nanoparticles in vegetable base lubricants is not beneficial to wear reduction.  相似文献   
7.
Large quantities of coolant–lubricants are still widely used in the metal working industry, generating high consumption and discard costs and impacting the environment. Alternatives to current practices are getting more serious consideration in response to environmental and operational cost pressures. In the grinding process, promising alternatives to conventional dry and fluid coolant applications are minimum quantity lubrication (MQL) or near dry grinding process. Despite several researches, there have been a few investigations about the influence of different types of coolant–lubricants and grinding wheels on the process results. The current study aims to show the effects of the above parameters on grinding performance such as grinding forces and surface quality. The tests have been performed in presence of fluid, air jet and eleven types of coolant–lubricants, as well as, in dry condition. The grinding wheels employed in this study were vitrified bond corundum, resin bond corundum and vitrified bond SG wheels. The results indicate that SG wheels and MQL oils have potential for the development of the MQL process in comparison to vitrified and resin bond corundums and water miscible oils. Also, the lowest thermal damages, material side flow on the ground surface and wheel loading were generated by using the SG grinding wheel in MQL grinding process.  相似文献   
8.
The corrosion of the ferritic–martensitic steel P92 exposed to supercritical water at 550 °C under 25 MPa with the dissolved oxygen contents of 100, 300 and 2000 ppb was investigated. The results indicated that the weight gain increased with the dissolved oxygen content. The oxide scale with a typical dual-layered structure including a Fe-rich outer magnetite layer and a Cr-rich inner layer was formed on all samples in spite of different dissolved oxygen. Finally, the possible explanations for the influence of the dissolved oxygen content on the weight gain and exfoliation of oxide scale were given.  相似文献   
9.
Micro electro discharge machining (micro EDM) is suitable for machining micro holes on metal alloy materials, and the micro holes can be machined even to several microns by use of wire electro discharge grinding (WEDG) of micro electrodes. However, considering practicability of micro holes <Φ100 μm in batch processing, the controllable accuracy of holes’ diameter, the consistency accuracy of repeated machining and the processing efficiency are required to be systematically improved. On the basis of conventional WEDG method, a tangential feed WEDG (TF-WEDG) method combined with on-line measurement using a charge coupled device (CCD) was proposed for improving on-line machining accuracy of micro electrodes. In TF-WEDG, removal resolution of micro-electrode diameter (the minimum thickness to be removed from micro electrode) is greatly improved by feeding the electrode along the tangential direction of wire-guide arc, and the resolution is further improved by employing negative polarity machining. Taking advantage of the high removal resolution, the precise diameter of micro-electrode can be achieved by the tangential feed of electrode to a certain position after diameter feedback of on-line measurement. Furthermore, a hybrid process was presented by combining the TF-WEDG method and a self-drilled holes method to improve the machining efficiency of micro electrodes. A cyclic alternating process of micro-electrode repeated machining and micro holes’ drilling was implemented for array micro holes with high consistency accuracy. Micro-EDM experiments were carried out for verifying the proposed methods and processes, and the experimental results show that the repeated machining accuracy of micro electrodes was less than 2 μm and the consistency accuracy of array micro holes was ±1.1 μm.  相似文献   
10.
Three different lubricating greases and their bleed and base oils were compared in terms of film thickness in a ball-on-disc test rig through optical interferometry. The theoretical values calculated according to Hamrock's equation are in close agreement with the base oil film thickness measurements, which validates the selected experimental methodology.The grease and bleed oil film thickness under fully flooded lubrication conditions presented quite similar behaviour and levels. Therefore, the grease film thickness under full film conditions might be predicted using their bleed oil properties, namely the viscosity and pressure-viscosity coefficient. The base and bleed oil lubricant parameter LP are proportional to the measured film thickness.A relationship between grease and the corresponding bleed oil film thickness was evidenced.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号