首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   674篇
  免费   51篇
  国内免费   20篇
电工技术   73篇
综合类   17篇
化学工业   82篇
金属工艺   20篇
机械仪表   17篇
建筑科学   5篇
矿业工程   11篇
能源动力   53篇
轻工业   1篇
水利工程   1篇
无线电   152篇
一般工业技术   15篇
冶金工业   7篇
原子能技术   1篇
自动化技术   290篇
  2023年   50篇
  2022年   19篇
  2021年   29篇
  2020年   51篇
  2019年   22篇
  2018年   29篇
  2017年   78篇
  2016年   73篇
  2015年   79篇
  2014年   61篇
  2013年   34篇
  2012年   34篇
  2011年   31篇
  2010年   22篇
  2009年   24篇
  2008年   4篇
  2007年   28篇
  2006年   25篇
  2005年   9篇
  2004年   6篇
  2003年   5篇
  2002年   6篇
  2001年   4篇
  2000年   5篇
  1999年   5篇
  1998年   2篇
  1997年   3篇
  1995年   2篇
  1993年   1篇
  1991年   2篇
  1988年   2篇
排序方式: 共有745条查询结果,搜索用时 15 毫秒
1.
Small group detection and tracking in crowd scenes are basis for high level crowd analysis tasks. However, it suffers from the ambiguities in generating proper groups and in handling dynamic changes of group configurations. In this paper, we propose a novel delay decision-making based method for addressing the above problems, motivated by the idea that these ambiguities can be solved using rich temporal context. Specifically, given individual detections, small group hypotheses are generated. Then candidate group hypotheses across consecutive frames and their potential associations are built in a tree. By seeking for the best non-conflicting subset from the hypothesis tree, small groups are determined and simultaneously their trajectories are got. So this framework is called joint detection and tracking. This joint framework reduces the ambiguities in small group decision and tracking by looking ahead for several frames. However, it results in the unmanageable solution space because the number of track hypotheses grows exponentially over time. To solve this problem, effective pruning strategies are developed, which can keep the solution space manageable and also improve the credibility of small groups. Experiments on public datasets demonstrate the effectiveness of our method. The method achieves the state-of-the-art performance even in noisy crowd scenes.  相似文献   
2.
By leveraging the secret data coding using the remainder storage based exploiting modification direction (RSBEMD), and the pixel change operation recording based on multi-segment left and right histogram shifting, a novel reversible data hiding (RHD) scheme is proposed in this paper. The secret data are first encoded by some specific pixel change operations to the pixels in groups. After that, multi-segment left and right histogram shifting based on threshold manipulation is implemented for recording the pixel change operations. Furthermore, a multiple embedding policy based on chess board prediction (CBP) and threshold manipulation is put forward, and the threshold can be adjusted to achieve adaptive data hiding. Experimental results and analysis show that it is reversible and can achieve good performance in capacity and imperceptibility compared with the existing methods.  相似文献   
3.
《Ceramics International》2019,45(15):18501-18508
The modification and tuning features of nanostructured films are of great interest because of controllable and distinctive inherent properties in these materials. Here, nanocrystalline MoS2 films were fabricated on the stainless steels by a radio frequency magnetron sputtering at ambient temperature. X-ray photoelectron spectroscopy, energy-dispersive X-ray spectroscopy, X-ray diffraction and Raman scattering spectroscopy were used to study the chemical state, chemical composition, crystal structure and vibrational properties of the fabricated MoS2 films. The bias voltage dependent structural evolution and its influence on the optical properties of MoS2 nanocrystalline films were systematically investigated. Besides, the residual stresses of MoS2 nanocrystalline films were explored by employing sin2ψ approach. X-ray diffraction demonstrates that the nanocrystalline MoS2 films have single-phase hexagonal crystal structure. All MoS2 films are polycrystalline in nature. The bandgap values are found to be intensively dependent on bias voltage. Our findings show that the nanocrystalline MoS2 films with different physical properties and intense quantum confinement effect can be realized through adjusting bias voltages. This work may provide deep insight for realizing transitional metal dichalcogenide-based nanostructured film optoelectronic devices with tunable physical properties through a traditional, very cost-effective, and large-scale fabrication method.  相似文献   
4.
The identification rate of UHF RFID system was restricted by multipath propagation effects.The system identification performance was studied considering the correlation coefficient between forward and reverse channels.Based on the generalized Rician fading channel model,the analytical expression of identification rate was derived under independent,full correlation and correlation cases.Compared with the existing analysis,the proposed uniform calculation formula of identification rate was for any correlation coefficient and kinds of channel conditions.The numerical computation and Monte-carlo simulations show that the influences of different correlation coefficients,channel conditions,sensitivity and distance on the identification rate.  相似文献   
5.
BaCu2-xCoxSi2O7 solid solutions with orthorhombic structure (Pnma) were prepared by solid-state reaction method. The phase synthesis process, structural evolution and microwave dielectric properties of BaCu2-xCoxSi2O7 ceramics were investigated. Single BaCu2Si2O7 phase was obtained when calcined at 950 °C for 3 h and was decomposed into BaCuSi2O6 phase when calcined at 1075 °C for 3 h. The sintering process was effectively promoted when Cu2+ was replaced by Co2+ and the maximum solubility of BaCu2-xCoxSi2O7 was located between 0.15 and 0.20. P-V-L complex chemical bond theory and Raman spectra were used to explain the structure-property correlations of BaCu2-xCoxSi2O7 ceramics. The corrected dielectric constant (εr-corr) of BaCu2-xCoxSi2O7 ceramics decreased monotonously with the susceptibility (Σχμ) and ionic polarizability of primitive unit cell. The quality factor (Q × f) increased with bond strength and lattice energy (Ucal), especially the lattice energy of the Si-O bond. The temperature coefficient of resonant frequency (τf) was determined by the susceptibility and lattice energy of the Cu/Co-O bond. The following optimum microwave dielectric properties were obtained at x = 0.15 when sintered at 1000 °C for 3 h: εr = 8.45, Q×f =58958 GHz and τf = -34.4 ppm/°C.  相似文献   
6.
xBi2/3Cu3Ti4O12/(1-x)CaCu3Ti4O12 composites were prepared by traditional solid-state reaction method. Extremely high nonlinear coefficient of 25 and breakdown field of 18.92 kV·cm−1 were obtained in small current range of 0.1−1 mA·cm-2. In addition, reduced dielectric loss of 0.055 was achieved with high dielectric constant of 1369. Optimized nonlinear and dielectric properties were integrated to make the composites a promising dual-function varistor-capacitor candidate. Microstructure analysis discovered two areas with various Bi/Ca ratio, designated as Bi-H and Bi-L respectively. It was found that the maximum ratio of Bi-H/Bi-L heterogeneous interface corresponded to optimized nonlinear and dielectric performance, which was associated with elevated potential barrier height and huge grain boundary resistance. Combined with relaxation analysis, a core-shell structure was proposed to elaborate microstructure evolution in xBi2/3Cu3Ti4O12/(1-x)CaCu3Ti4O12 composite. According to the core-shell model, variation of heterogeneous interface was illustrated on how to influence nonlinear properties, which was well fitted to experimental results.  相似文献   
7.
The structural, elastic, and thermodynamic properties of ZnGeP2 with chalcopyrite structure are investigated using the pseudo-potentials plane wave method based on the density functional theory with the generalized gradient approximation. The lattice parameters (a, c and u) are directly calculated and agree well with previous experimental and theoretical results. The obtained negative formation enthalpy shows that ZnGeP2 crystal has strong structural stability. We have also calculated the bulk modulus B and the elastic parameters (C11, C12, C13, C33, C44, and C66) which have not been measured yet. The accuracy and reliability of the calculated elastic constants of ZnGeP2 crystal are discussed. In addition, the pressure and temperature dependencies of the lattice parameters, bulk modulus, Debye temperature, Grüneisen parameter, entropy, volume thermal expansion coefficient, and specific heat capacity are obtained in the ranges of 0–20 GPa and 0–1200 K using the quasi-harmonic Debye model. To our knowledge this is the first quantitative theoretical prediction of the thermodynamic properties for ZnGeP2 compound and still awaits experimental confirmations.  相似文献   
8.
9.
Single image super resolution (SISR) is an important research content in the field of computer vision and image processing. With the rapid development of deep neural networks, different image super-resolution models have emerged. Compared to some traditional SISR methods, deep learning-based methods can complete the superresolution tasks through a single image. In addition, compared with the SISR methods using traditional convolutional neural networks, SISR based on generative adversarial networks (GAN) has achieved the most advanced visual performance. In this review, we first explore the challenges faced by SISR and introduce some common datasets and evaluation metrics. Then, we review the improved network structures and loss functions of GAN-based perceptual SISR. Subsequently, the advantages and disadvantages of different networks are analyzed by multiple comparative experiments. Finally, we summarize the paper and look forward to the future development trends of GAN-based perceptual SISR.  相似文献   
10.
In literature, five different sets of work material constants used in the Johnson–Cook's (J–C) constitutive equation are implemented in a numerical model to describe the behaviour of AISI 316L steel. The aim of this research is to study the effects of five different sets of material constants of the J–C constitutive equation in finite-element modelling of orthogonal cutting of AISI 316L on the experimental and predicted cutting forces, chip morphology, temperature distributions and residual stresses. Several experimental equipments were used to estimate the experimental results, such as piezoelectric dynamometer for cutting forces measurements, thermal imaging system for temperature measurements and X-ray diffraction technique for residual stresses determination on the machined surfaces; while an elastic–viscoplastic FEM formulation was implemented to predict the local and global variables involved in this research. It has been observed that all the considered process output and, in particular the residual stresses are very sensitive to the J–C's material constants.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号