首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1989篇
  免费   84篇
  国内免费   12篇
电工技术   4篇
综合类   10篇
化学工业   748篇
金属工艺   72篇
机械仪表   11篇
建筑科学   12篇
矿业工程   17篇
能源动力   475篇
轻工业   117篇
水利工程   3篇
石油天然气   30篇
无线电   163篇
一般工业技术   324篇
冶金工业   31篇
原子能技术   1篇
自动化技术   67篇
  2024年   3篇
  2023年   174篇
  2022年   69篇
  2021年   82篇
  2020年   173篇
  2019年   176篇
  2018年   27篇
  2017年   101篇
  2016年   110篇
  2015年   109篇
  2014年   132篇
  2013年   105篇
  2012年   79篇
  2011年   74篇
  2010年   51篇
  2009年   57篇
  2008年   19篇
  2007年   84篇
  2006年   97篇
  2005年   53篇
  2004年   28篇
  2003年   30篇
  2002年   35篇
  2001年   34篇
  2000年   12篇
  1999年   27篇
  1998年   7篇
  1997年   7篇
  1996年   14篇
  1995年   12篇
  1994年   7篇
  1993年   5篇
  1992年   9篇
  1991年   5篇
  1990年   7篇
  1989年   4篇
  1988年   15篇
  1987年   27篇
  1986年   23篇
  1985年   2篇
排序方式: 共有2085条查询结果,搜索用时 31 毫秒
1.
A new catalyst for both water reduction and oxidation, based on an infinite chain, {[Ni(tn)2]3 [Fe(CN)4 (μ-CN)2]2}n, is formed by the reaction of NiCl2, 1,3-propanediamine (tn) and K3 [Fe(CN)6]. {[Ni(tn)2]3 [Fe(CN)4 (μ-CN)2]2}n can electro-catalyze hydrogen evolution from a neutral aqueous buffer (pH 7.0) with a turnover frequency (TOF) of 1561 mol of hydrogen per mole of catalyst per hour (H2/mol catalyst/h) at an overpotential (OP) of 837 mV {[Ni(tn)2]3 [Fe(CN)4 (μ-CN)2]2}n also can electro-catalyze O2 production from water with a TOF of ~45 mol O2 (mol cat)?1s?1 at an OP of 591 mV. Under blue light (λ = 469 nm), together with CdS nanorods (CdS NRs) as a photosensitizer, and ascorbic acid (H2A) as a sacrificial electron donor, {[Ni(tn)2]3 [Fe(CN)4 (μ-CN)2]2}n can photo-catalyze hydrogen generation from an aqueous buffer (pH 4.0) with a turnover number (TON) of 11,450 mol H2 per mole of catalyst (mol of H2 (mol of cat)?1) during 10 h irradiation. The average of apparent quantum yield (AQY) is as high as 40.96% during 10 h irradiation. Studies indicate that {[Ni(tn)2]3 [Fe(CN)4 (μ-CN)2]2}n exists in two forms: a cyano-bridged chain ({[Ni(tn)2]3 [Fe(CN)4 (μ-CN)2]2}n) in solid, and a salt ([Ni(tn)2]3 [Fe(CN)6]2) in aqueous media; Catalytic reaction occurs on the nickel center of [Ni(tn)2]2+, and the introduction of [Fe(CN)6]3- can improve the catalytic efficiency of [Ni(tn)2]2+ for H2 or O2 generation. We hope these findings can afford a new method for the design of catalysts for both water reduction and oxidation.  相似文献   
2.
3.
The electromagnetic shielding effectiveness of kenaf fiber based composites with different iron oxide impregnation levels was investigated. The kenaf fibers were retted for removing the lignin and extractives from the fibers and magnetized. Using the unsaturated polyester and the magnetized fibers, kenaf fiber based composites were manufactured by the compression molding process. The transmission energies of the composites were characterized when the composite samples were exposed under the irradiation of electromagnetic (EM) wave with a variable frequency from 9 GHz to 11 GHz. Using the Scanning Electron Microscope (SEM), the iron oxide nanoparticles were observed on the surfaces and inside the micropore structures of single fibers. As the Fe content increased from 0% to 6.8%, 15.9% and 18.0%, the total surface free energy of kenaf fibers with the magnetizing treatments increased from 44.8 mJ/m2 to 46.1 mJ/m2, 48.8 mJ/m2 and 53.0 mJ/m2, respectively, while the modulus of elasticity reduced from 2875 MPa to 2729 MPa, 2487 MPa and 2007 MPa, respectively. Meanwhile, the shielding effectiveness was increased from 30–50% to 60–70%, 65–75% and 70–80%, respectively.  相似文献   
4.
Three-dimensional (3D) highly interconnected graphitized macroporous carbon foam with uniform mesopore walls has been successfully fabricated by a simple and efficient hydrothermal approach using resorcinol and formaldehyde as carbon precursors. The commercially available cheap polyurethane (PU) foam and Pluronic F127 were used as a sacrificial polymer and mesoporous structure-directing templates, respectively. The graphitic structure of carbon foam was obtained by catalytic graphitization method using iron as catalyst. Three different carbon foams such as graphitized macro-mesoporous carbon (GMMC) foam, amorphous macro-mesoporous carbon (AMMC) foam and graphitized macroporous carbon (GMC) foam were fabricated and their physicochemical and mechanical properties were systematically measured and compared. It was found that GMMC possess well interconnected macroporous structure with uniform mesopores located in the macroporous skeletal walls of continuous framework. Besides, GMMC foam possesses a well-defined graphitic framework with high surface area (445 m2/g), high pore volume (0.35 cm3/g), uniform mesopores (3.87 nm), high open porosity (90%), low density (0.30 g/cm3) with good mechanical strength (1.25 MPa) and high electrical conductivity (11 S/cm) which makes it a promising material for many potential applications.  相似文献   
5.
The use of ozone to increase the cation exchange capacity (CEC) of two chars produced from pyrolysis of Douglas fir (Pseudotsuga menziessii) and a control bituminous coal activated carbon (AC) is reported. Chars were produced from the wood fraction of Douglas fir (DFWC) and the bark (DFBC) at 500 °C using an auger driven reactor with a nitrogen sweep gas under mild vacuum. Five ozone treatment times, ranging from 5 min to 60 min, were investigated. The initial properties of each char were found to differ significantly from the other samples in terms of surface area, proximate composition, and elemental composition. DFWC did not show significant mass loss or temperature variation during ozone treatment; however, after 1 h of oxidation both DFBC and AC samples resulted in 20% and 30% mass loss, respectively, and reactor temperatures in excess of 60 °C. Analysis of the pore size distribution of each treatment shows that ozone treatment did not significantly affect small micropores after 30 min of treatment for any material, but did reduce the apparent surface area of mesopores. Increases in carboxylic groups were identified with ozone treatment and found to correlate strongly with changes in measured CEC. The formation of lactone was found to correlate positively with reactor temperature during oxidation. These results indicate that the properties of chars, including surface area, pore structure, and chemical composition, as well as reactor conditions strongly affect the ozone oxidation of chars.  相似文献   
6.
PEM-based electrolytic air dehumidification is innovative in dehumidification that requires high precision and small space due to its high efficiency, compactness, and cleanness. However, the system dehumidification performance and durability are limited by using commercial Anatase-IrO2 catalysts. In this study, two types of structurally modified OER catalyst materials, ATO-IrO2 and ND-MnO2-IrO2, are developed to improve the performance of the system. System experiments showed that, compared to the commercial catalysts, the use of ATO-IrO2 and ND-MnO2-IrO2 as the anode catalyst can improve the dehumidification performance by 45% and 20%, respectively. Furthermore, in 50-h accelerated aging tests, the attenuation rates of the ATO-IrO2 and ND-MnO2-IrO2 systems are 3% and 8% respectively, which are far lower than the 35% attenuation of commercial catalyst. The results indicate that, as catalysts with a classic core-shell structure, ATO-IrO2 and ND-MnO2-IrO2 still have a significant impact on improving the performance of the electrolytic dehumidification systems.  相似文献   
7.
A poly(aminoborazine), precursor for hexagonal boron nitride (h-BN) obtained by reaction of borazine B3N3H6 with ammonia, and its pyrolysis derivatives have been extensively characterised by 15N and 11B MAS NMR. The various B and N sites have been identified according to their first neighbouring atoms, as well as to the second ones in the case of 15N, and have also been quantified. This study demonstrates that a suitable choice of NMR techniques together with the use of isotopic enrichment can lead to a large improvement in spectral resolution, which allows a better understanding of such complex BN preceramic polymer structures and permits to follow the polymer-to-ceramic transformation.  相似文献   
8.
Compressive creep tests in air were carried out on 1 cat.% Fe-doped alumina at a temperature T=1400 °C. Iron doping affected the plastic deformation by different ways in relation with Fe2+ cations population. Fe2+ cations sped up the deformation rates. FeAl2O4 spinel precipitates were identified and they were found (i) to interact with alumina grain boundaries (ii) to limit the grain growth within a range of strain. The Fe2+ cations underwent oxidation and this resulted in the dissolution of the some precipitates and in the decrease of deformation rates. It was suggested that deformation sped up this evolution through mass transport and that time was not a dominating parameter.  相似文献   
9.
10.
Photocatalytic activity of mesoporous titania supported nickel oxide photocatalyst synthesized by single-step sol–gel (SSSG) process combined with surfactant-assisted template method was investigated for hydrogen evolution from an aqueous methanol solution, in comparison with one prepared by conventional incipient wetness impregnation (IWI) method. In single-step sol–gel process, nickel precursor was introduced into the titania sol prepared with the aid of a surfactant template behaving as pore-controlling agent to attain meso-scaled pore. The single-step sol–gel photocatalyst was experimentally found to enhance the photocatalytic evolution of hydrogen rather than the impregnated one. The optimum level of nickel loading in photocatalytic activity test for single-step sol–gel method was slightly higher than that for incipient wetness impregnation method. Characterization results demonstrated the significant modification of physical characteristics of the single-step sol–gel photocatalyst, anticipated to relating to the observation of higher photocatalytic hydrogen evolution activity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号