首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12391篇
  免费   1510篇
  国内免费   385篇
电工技术   5250篇
综合类   543篇
化学工业   1948篇
金属工艺   669篇
机械仪表   400篇
建筑科学   138篇
矿业工程   307篇
能源动力   1861篇
轻工业   147篇
水利工程   18篇
石油天然气   91篇
武器工业   65篇
无线电   729篇
一般工业技术   1231篇
冶金工业   358篇
原子能技术   28篇
自动化技术   503篇
  2024年   48篇
  2023年   219篇
  2022年   496篇
  2021年   508篇
  2020年   646篇
  2019年   489篇
  2018年   408篇
  2017年   639篇
  2016年   685篇
  2015年   541篇
  2014年   812篇
  2013年   594篇
  2012年   770篇
  2011年   1075篇
  2010年   734篇
  2009年   703篇
  2008年   658篇
  2007年   807篇
  2006年   663篇
  2005年   528篇
  2004年   467篇
  2003年   438篇
  2002年   332篇
  2001年   293篇
  2000年   238篇
  1999年   132篇
  1998年   90篇
  1997年   55篇
  1996年   71篇
  1995年   45篇
  1994年   40篇
  1993年   12篇
  1992年   6篇
  1991年   8篇
  1990年   4篇
  1989年   5篇
  1988年   6篇
  1987年   1篇
  1986年   2篇
  1982年   1篇
  1980年   1篇
  1977年   1篇
  1972年   1篇
  1964年   1篇
  1960年   1篇
  1959年   1篇
  1957年   1篇
  1956年   1篇
  1954年   1篇
  1951年   8篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
1.
《Ceramics International》2022,48(16):23341-23347
In recent years, the rapid development of Li(NixCoyMn1-x-y)O2 (LNCM) materials for application in ternary lithium-ion batteries has led to an increased demand for refractory kiln saggars in industries. However, saggars used for firing ternary Li-ion battery cathode materials are often subjected to severe corrosion and spalling. To investigate the damage mechanism of the saggar materials, non-contact corrosion experiments were designed to study the effects of the precursor additions, calcination temperature, and number of calcinations during the interaction between mullite saggar and LNCM materials. The phase composition and microstructure of the mullite saggar specimens before and after corrosion were characterized using X-ray diffraction and scanning electron microscopy, respectively, to obtain a comprehensive understanding of the causes of the deterioration of mullite saggar materials during corrosion.  相似文献   
2.
Developing non-precious metal-based catalysts as the substitution of precious catalysts (Pt/C) in oxygen reduction reaction (ORR) is crucial for energy devices. Herein, a template and organic solvent-free method was adopted to synthesize Fe, B, and N doped nanoflake-like carbon materials (Fe/B/N–C) by pyrolysis of monoclinic ZIF-8 coated with iron precursors and boric acid. Benefiting from introducing B into Fe–N–C, the regulated electron cloud density of Fe-Nx sites enhance the charge transfer and promotes the ORR process. The as-synthesized Fe/B/N–C electrocatalyst shows excellent ORR activity of a half-wave potential (0.90 V vs 0.87 V of Pt/C), together with superior long-term stability (95.5% current density retention after 27 h) in alkaline media and is even comparable to the commercial Pt/C catalyst (with a half-wave potential of 0.74 V vs 0.82 V of Pt/C) in an acidic electrolyte. A Zn-air battery assembled with Fe/B/N–C as ORR catalyst delivers a higher open-circuit potential (1.47 V), specific capacity (759.9 mA h g?1Zn at 10 mA cm?2), peak power density (62 mW cm?2), as well as excellent durability (5 mA cm?2 for more than 160 h) compared to those with commercial Pt/C. This work provides an effective strategy to construct B doped Fe–N–C materials as nonprecious ORR catalyst. Theoretical calculations indicate that introduction of B could induce Fe-Nx species electronic configuration and is favorable for activation of OH1 intermediates to promote ORR process.  相似文献   
3.
This article proposes an active balancer, which features bidirectional charge shuttling and adaptive equalization current control, to fast counterbalance the state of charge (SOC) of cells in a lithium-ion battery (LIB) string. The power circuit consists of certain bidirectional buck-boost converters to transfer energy among the different cells back and forth. Owing to the characterization of the open-circuit voltage (OCV) vs SOC in LIB being relatively smooth near the SOC middle range, the SOC-inspected balance strategy can achieve more precise and efficient equilibrium than the voltage-based control. Accordingly, a compensated OCV-based SOC estimation is put forward to take into account the discrepancy of SOC estimation. Besides, the varied-duty-cycle (VDC) and curve-fitting modulation (CFM) methods are devised herein to tackle the problems of slow equalization rate and low balance efficacy, which arise from the diminution in balancing current as the SOC difference between the cells decreases in the later duration of equalization especially. The proposed strategies have taken the battery nonlinear characteristic and circuit parameter nonideality into account and can adaptively modulate the duty cycle with the SOC difference to keep balancing current constant throughout the balancing cycle. Simulated and experimental results are given to demonstrate the feasibility and effectiveness of the same prototype constructed. Compared with the fixed duty cycle and the VDC methods, the proposed CFM has the best balancing efficiency of 81.4%, and the balance time is shortened by 27.1% and 18.6%, respectively.  相似文献   
4.
The evaluation of cell's weatherability is of practical interest. To further improve the soluble lead flow battery's weatherability, physiochemical properties of electrolytes containing fluoborate, perchlorate, methanesulfonate and trifluoromethanesulfonate are investigated from ?60 to 50 °C. Activities of CF3SO3H and HClO4 are poor in trifluoromethanesulfonate and perchlorate solutions due to common anion effect. The solubility of lead salt can be improved by increasing temperature, but worsened by increasing acid's content. With the temperature increasing, the conductivity is enhanced, and the viscosity is lowered for four solutions. The same results have been found by increasing acid's content except for CF3SO3H. The high energy efficiency can be achieved for cells over ?40–0 °C using fluoborate and perchlorate solutions, 73.2% at ?40 °C and 78.1% at ?30 °C respectively. Over the temperature range of 20–50 °C, the cells with methanesulfonate and trifluoromethanesulfonate solutions have good performance, 77.4% and 73.7% at 50 °C respectively.  相似文献   
5.
《Advanced Powder Technology》2020,31(10):4187-4196
Manganese oxide catalysts have been synthesized from the used batteries via hydrometallurgical method and effect of hydrometallurgical parameters such as the effect of acid type (H2SO4, HNO3, HCl), acid concentration (0.5, 1, 1.5, 2 %v/v) and powder to acid ratio (1/50, 1/60, 1/70, 1/80) were in detail investigated. The physico-chemical properties of as-prepared catalysts were characterized by FT-IR, XRD, FESEM, EDX, BET, TEM, and TPR-H2 analysis. The activity of as-prepared catalysts were investigated towards the oxidation of benzene, toluene, and xylene (BTX) in a plasma-catalytic process. The results show that benzene and toluene conversion were almost constant in the range of 97–98% in case of various acid types, acid concentrations and solid to liquid ratios. However, the xylene conversion were varied in case of different hydrometallurgical factors. The highest xylene conversion was obtained in the presence of MnS0.5–60, which was prepared using H2SO4 with concentration of 0.5%v/v and solid to liquid ratio of 1/60. The effect of the input voltage and BTX flow rate on the BTX conversion was also investigated using MnS0.5–60 catalyst in detail.  相似文献   
6.
The mechanical integrity of battery separators is critical for battery safety and durability. A comprehensive study of strain‐rate‐dependent tensile and puncture properties of a polypropylene lithium‐ion battery separator is presented here with a new model. Due to anisotropy of the polymeric membrane, tensile testing was conducted for different directions. Results showed that tensile strength and elastic modulus were increased 1000% and 500%, respectively, for different directions. It was also demonstrated that tensile strength changed 10 to 25% with strain rate (1.67 × 10?4 to 1.67 × 10?1 s?1) for different directions. An equation was obtained for the first time for flow stress versus strain rate at varied tensile directions with respect to machine direction. Moreover, puncture testing was performed and it was shown that puncture strength was increased 140% with increasing strain rate from 0.25 to 250 mm min?1. Two failure modes were also observed in puncture samples. Finally, Eyring's model was used to calculate activation enthalpy of the porous polypropylene separator. © 2020 Society of Chemical Industry  相似文献   
7.
Spinel LiSr0·1Cr0·1Mn1·8O4 was synthesised by high temperature solid state method in order to enhance the electrochemical performance. The LiSr0·1Cr0·1Mn1·8O4 (LSCMO) materials were characterised by X-ray diffraction (XRD), scanning electron microscopy (SEM) and electrochemical tests. The XRD and SEM studies confirm that LSCMO had spinel crystal structure with a space group of Fd3m, and the particle of LSCMO shows irregular shape. The cyclic voltammetry data illustrated that the heavy current charge–discharge performance of LMO was improved by Sr2+ and Cr3+ doping. The galvanostatic charge–discharge of LSCMO cathode materials was measured at 1, 5, 10 and 20 C. The results indicated that LSCMO improved the capacity retention.  相似文献   
8.
In this study, solvent‐free nanofibrous electrolytes were fabricated through an electrospinning method. Polyethylene oxide (PEO), lithium perchlorate and ethylene carbonate were used as polymer matrix, salt and plasticizer respectively in the electrolyte structures. Keggin‐type hetero polyoxometalate (Cu‐POM@Ru‐rGO, Ni‐POM@Ru‐rGO and Co‐POM@Ru‐rGO (POM, polyoxometalate; rGO, reduced graphene oxide)) nanoparticles were synthesized and inserted into the PEO‐based nanofibrous electrolytes. TEM and SEM analyses were carried out for further evaluation of the synthesized filler structures and the electrospun nanofibre morphologies. The fractions of free ions and crystalline phases of the as‐spun electrolytes were estimated by obtaining Fourier transform infrared and XRD spectra, respectively. The results showed a significant improvement in the ionic conductivity of the nanofibrous electrolytes by increasing filler concentrations. The highest ionic conductivity of 0.28 mS cm?1 was obtained by the introduction of 0.49 wt% Co‐POM@Ru‐rGO into the electrospun electrolyte at ambient temperature. Compared with solution‐cast polymeric electrolytes, the electrospun electrolytes present superior ionic conductivity. Moreover, the cycle stability of the as‐spun electrolytes was clearly improved by the addition of fillers. Furthermore, the mechanical strength was enhanced with the insertion of 0.07 wt% fillers to the electrospun electrolytes. The results implied that the prepared nanofibres are good candidates as solvent‐free electrolytes for lithium ion batteries. © 2020 Society of Chemical Industry  相似文献   
9.
GIL运输专用机具是为安全、可靠、高效地完成苏通GIL综合管廊工程GIL单元的运输任务而研制的专用机具,其中动力电池系统设计是整机设计的重点之一。通过对各种常见动力电池优缺点的分析,并结合苏通GIL运输专用机具对动力电池的需求分析,确定了动力电池系统的技术路线,为苏通GIL运输专用机具的研制提供了坚实的基础。  相似文献   
10.
Spherical LiNi1/3Co1/3Mn1/3O2 cathode particles were resynthesized by a carbonate co-precipitation method using spent lithium-ion batteries (LIBs) as a raw material. The physical characteristics of the Ni1/3Co1/3Mn1/3CO3 precursor, the (Ni1/3Co1/3Mn1/3)3O4 intermediate, and the regenerated LiNi1/3Co1/3Mn1/3O2 cathode material were investigated by laser particle-size analysis, scanning electron microscopy–energy-dispersive spectroscopy (SEM-EDS), thermogravimetry–differential scanning calorimetry (TG-DSC), X-ray diffraction (XRD), inductively coupled plasma–atomic emission spectroscopy (ICP-AES), and X-ray photoelectron spectroscopy (XPS). The electrochemical performance of the regenerated LiNi1/3Co1/3Mn1/3O2 was studied by continuous charge–discharge cycling and cyclic voltammetry. The results indicate that the regenerated Ni1/3Co1/3Mn1/3CO3 precursor comprises uniform spherical particles with a narrow particle-size distribution. The regenerated LiNi1/3Co1/3Mn1/3O2 comprises spherical particles similar to those of the Ni1/3Co1/3Mn1/3CO3 precursor, but with a narrower particle-size distribution. Moreover, it has a well-ordered layered structure and a low degree of cation mixing. The regenerated LiNi1/3Co1/3Mn1/3O2 shows an initial discharge capacity of 163.5 mA h g?1 at 0.1 C, between 2.7 and 4.3 V; the discharge capacity at 1 C is 135.1 mA h g?1, and the capacity retention ratio is 94.1% after 50 cycles. Even at the high rate of 5 C, LiNi1/3Co1/3Mn1/3O2 delivers the high capacity of 112.6 mA h g?1. These results demonstrate that the electrochemical performance of the regenerated LiNi1/3Co1/3Mn1/3O2 is comparable to that of a cathode synthesized from fresh materials by carbonate co-precipitation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号