首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   38191篇
  免费   3918篇
  国内免费   1922篇
电工技术   2744篇
技术理论   2篇
综合类   2974篇
化学工业   8504篇
金属工艺   1111篇
机械仪表   1733篇
建筑科学   3400篇
矿业工程   1378篇
能源动力   4263篇
轻工业   2656篇
水利工程   834篇
石油天然气   2112篇
武器工业   335篇
无线电   4161篇
一般工业技术   3361篇
冶金工业   1372篇
原子能技术   666篇
自动化技术   2425篇
  2024年   129篇
  2023年   664篇
  2022年   1110篇
  2021年   1471篇
  2020年   1465篇
  2019年   1260篇
  2018年   1187篇
  2017年   1428篇
  2016年   1631篇
  2015年   1720篇
  2014年   2530篇
  2013年   2582篇
  2012年   2796篇
  2011年   2934篇
  2010年   2246篇
  2009年   2327篇
  2008年   2076篇
  2007年   2317篇
  2006年   2113篇
  2005年   1730篇
  2004年   1368篇
  2003年   1241篇
  2002年   1006篇
  2001年   866篇
  2000年   732篇
  1999年   582篇
  1998年   411篇
  1997年   399篇
  1996年   351篇
  1995年   263篇
  1994年   225篇
  1993年   141篇
  1992年   125篇
  1991年   125篇
  1990年   76篇
  1989年   77篇
  1988年   47篇
  1987年   51篇
  1986年   43篇
  1985年   39篇
  1984年   29篇
  1983年   27篇
  1982年   32篇
  1981年   17篇
  1980年   4篇
  1979年   5篇
  1977年   4篇
  1959年   3篇
  1955年   3篇
  1951年   9篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
1.
In a typical embedded CPU, large on-chip storage is critical to meet high performance requirements. However, the fast increasing size of the on-chip storage based on traditional SRAM cells makes the area cost and energy consumption unsustainable for future embedded applications. Replacing SRAM with DRAM on the CPU’s chip is generally considered not worthwhile because DRAM is not compatible with the common CMOS logic and requires additional processing steps beyond what is required for CMOS. However a special DRAM technology, Gain-Cell embedded-DRAM (GC-eDRAM)  [1], [2], [3] is logic compatible and retains some of the good properties of DRAM (small and low power). In this paper we evaluate the performance of a novel hybrid cache memory where the data array, generally populated with SRAM cells, is replaced with GC-eDRAM cells while the tag array continues to use SRAM cells. Our evaluation of this cache demonstrates that, compared to the conventional SRAM-based designs, our novel architecture exhibits comparable performance with less energy consumption and smaller silicon area, enabling the sustainable on-chip storage scaling for future embedded CPUs.  相似文献   
2.
Ripe carambolas are hard to store and transport, while freeze-dried ones are easy to store. However, its long production time leads to higher costs. This study shows that high hydrostatic pressure (HHP) treatment could shorten the freeze-drying time of carambola slices. After HHP treatment (25–250 MPa), the drying time of the fresh sample can be shortened by 33.3–44.4% and the distribution of water and pigment in tissues is much uniform. With the increment of the pressure, 2,2-diphenyl-1-picrylhydrazyl (DPPH) and hydroxyl radical scavenging rate are increased. At 250 MPa, the total phenolic content (TPC) increased from 11.34 to 13.36 mg GAE g−1, and the total flavonoid content (TFC) of the control sample was increased from 10.77 to 12.73 mg RE g−1. Compared with the untreated sample, HHP treatment can enhance the flavour and shorten the freeze-drying time. This work guides the application of HHP technology for drying food processing.  相似文献   
3.
为解决电镀砂轮磨削加工中容屑空间不足的问题,采用点胶微粘接的方法制备了磨料有序排布的电镀砂轮,分析了磨料粘接效果和镀层力学性能。通过SEM分析了磨料/镀层/导电胶的结合界面,并进行了干磨削试验。研究结果表明,直径约为磨料粒径40%的胶点可粘接住磨料,单个胶点上粘接多颗磨料的占比小于6%;双脉冲电镀工艺制备的镀层显微硬度大于500HV,表层残余应力小于100MPa,磨料/镀层/导电胶之间的界面贴合紧密,无明显缺陷;砂轮在磨削时没有出现磨料脱落现象。  相似文献   
4.
This work aimed to examine the performance of the hybrid sintering of clay ceramic in a microwave furnace, compared to the sintering process in a conventional furnace. The raw materials were subjected to X-ray fluorescence, loss on ignition (LOI), X-ray diffraction, particle size distribution, real specific mass, and thermogravimetric analyses. The red clay ceramic mass was prepared, extruded, pre-sintered in a conventional furnace at 600°C/60 min, and sintered at temperatures between 700 °C and 1100 °C. The sintering conventional (resistive oven) was carried out for 60 min with a heating rate of 10°C/min. In the microwave furnace, the sintering times were 5, 10, and 15 min, with a heating rate of 50°C/min, with a sintering chamber coated with silicon carbide (susceptor). The sintered specimens were characterized according to linear shrinkage, water absorption, apparent porosity, apparent specific mass, X-ray diffraction, Raman spectroscopy analysis, spectroscopy analysis in the ultraviolet and visible regions, microhardness, and scanning electron microscopy. The results showed that microwave sintering promoted an increase in the microhardness and apparent specific mass, and reduction in water absorption and apparent porosity values, due to greater densification in the microstructure. The best results occurred for specimens sintered at 1100°C.  相似文献   
5.
Cell temperature and water content of the membrane have a significant effect on the performance of fuel cells. The current-power curve of the fuel cell has a maximum power point (MPP) that is needed to be tracked. This study presents a novel strategy based on a salp swarm algorithm (SSA) for extracting the maximum power of proton-exchange membrane fuel cell (PEMFC). At first, a new formula is derived to estimate the optimal voltage of PEMFC corresponding to MPP. Then the error between the estimated voltage at MPP and the actual terminal voltage of the fuel cell is fed to a proportional-integral-derivative controller (PID). The output of the PID controller tunes the duty cycle of a boost converter to maximize the harvested power from the PEMFC. SSA determines the optimal gains of PID. Sensitivity analysis is performed with the operating fuel cell at different cell temperature and water content of the membrane. The obtained results through the proposed strategy are compared with other programmed approaches of incremental resistance method, Fuzzy-Logic, grey antlion optimizer, wolf optimizer, and mine-blast algorithm. The obtained results demonstrated high reliability and efficiency of the proposed strategy in extracting the maximum power of the PEMFC.  相似文献   
6.
The triboelectric effect has recently demonstrated its great potential in environmental remediation and even new energy applications for triggering a number of catalytic reactions by utilizing trivial mechanical energy. In this study, Ba4Nd2Fe2Nb8O30 (BNFN) submicron powders were used to degrade organic dyes via the tribocatalytic effect. Under the frictional excitation of three PTFE stirring rods in a 5 mg/L RhB dye solution, BNFN demonstrates a high tribocatalytic degradation efficiency of 97% in 2 h. Hydroxyl radicals (?OH) and superoxide radicals (?O2-) were also detected during the catalysis process, which proves that triboelectric energy stimulates BNFN to generate electron-hole pairs. The tribocatalysis of tungsten bronze BNFN submicron powders provides a novel and efficient method for the degradation of wastewater dye by utilizing trivial mechanical energy.  相似文献   
7.
The low performance of open-cathode proton-exchange-membrane fuel cells (OCPEMFCs) is attributed to the low-humidity ambient air supplied to the cathode using electric fans. To improve the OCPEMFC performance, this paper proposes a novel humidification method by collecting water purged from the anode and supplying it to the open cathode. The OCPEMFC performance is evaluated at various humidifier distances from the cathode inlet, and it is compared with that where no humidifier is used when the OCPEMFC operates under three different current levels of 1, 5, and 8 A. The results show that the novel design improves the stack power, and optimal performance is achieved at a humidifier distance of 2 cm. The energy efficiency achieves an improvement between 1.4% and 1.8% when a humidifier is used.  相似文献   
8.
《Ceramics International》2022,48(1):769-775
Brittle materials generally exhibit size effects, and the mechanical properties of these materials degrade significantly with an increase in size. However, the mathematical law governing the attenuation degree of mechanical properties with the increase in size is still unknown. In this study, maximum loads of differently sized ceramic test strips were subjected to three point bending tests under two working conditions of equal spans and span amplifications, respectively. Subsequently, the theoretical maximum loads of materials were calculated using the finite element method (FEM). By calculating the difference between the calculated values and the actual maximum loads, the attenuation of mechanical properties of ceramic samples were observed. The results show that the theoretical mechanical properties and the performance attenuation caused by the size effect tend to increase according to the following equation: y=ax3+bx2+cx+d. Therefore, mechanical properties and performance attenuation of any sample exhibiting a size within the experimental range can be predicted by a mathematical law, which was obtained through mechanical tests results of four samples with different sizes. The obtained mathematical law holds great significance for predicting the mechanical properties of materials under size effects.  相似文献   
9.
In this study the constructional modification of Graphitic carbon nitride nanosheet (GCN-ns) has been made with the aid of ZnCr layered double hydroxide (ZC-LDH) in a unique 2D-2D structure to enhance its visible light absorption. Optical and morphological study presents successful incorporation of ZC-LDH on the surface of GCN-ns. Through adjusting of GCN-ns by ZC-LDH lower recombination rate of e?/h+ pairs, longer lifetimes and an increase in contamination reduction was brought out. The binary nanocomposite was employed to effectively degrade Rhodamine B under UV/vis light irradiation. The improvement in photocatalytic abilities was proven to be related to in situ self-production of H2O2 on GCN-ns/ZC-LDH surface by Xe light irradiation which in return accounts for additional hydroxide radical generation. Radical quenching experiments specified the main active species involved while the consequent step-scheme (S-scheme) charge transfer mechanism was proposed.  相似文献   
10.
The present study reports for the first time the performance of silver phosphate (Ag3PO4) microcrystals as photocatalyst (degradation of Rodamine B-RhB) and antifungal agent (against Candida albicansC. albicans) under visible-light irradiation (455 nm). Ag3PO4 microcrystals were synthesized by a simple co-precipitation (CP) method at room temperature. The structural and electronic properties of the as-synthetized Ag3PO4 have been investigated before and after 4 cycles of RhB degradation under visible light using X-ray diffraction (XRD), micro-Raman spectroscopy, UV–Vis spectrophotometer and field emission scanning electron microscopy (FE-SEM) images. The antifungal activity was analyzed in planktonic cells and 48h-biofilm of C. albicans by colony forming units (CFU) counting, confocal laser and FE-SE microscopies. Statistical analysis was carried out using SPSS software. Morphological and structural modifications of Ag3PO4 were observed upon recycling. After 4 recycles, the material maintained its photodegradation property; an eightfold increase in the efficiency of Ag3PO4 was observed in planktonic cells and a two fold increase in biofilm when irradiated under visible light. Thus, higher antifungal effectiveness against C. albicans was obtained when associated with visible-light irradiation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号