首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11506篇
  免费   919篇
  国内免费   220篇
电工技术   166篇
综合类   688篇
化学工业   3867篇
金属工艺   328篇
机械仪表   140篇
建筑科学   685篇
矿业工程   263篇
能源动力   384篇
轻工业   4269篇
水利工程   150篇
石油天然气   586篇
武器工业   8篇
无线电   121篇
一般工业技术   467篇
冶金工业   358篇
原子能技术   52篇
自动化技术   113篇
  2024年   56篇
  2023年   175篇
  2022年   331篇
  2021年   460篇
  2020年   390篇
  2019年   350篇
  2018年   313篇
  2017年   392篇
  2016年   310篇
  2015年   418篇
  2014年   635篇
  2013年   706篇
  2012年   879篇
  2011年   821篇
  2010年   618篇
  2009年   617篇
  2008年   513篇
  2007年   614篇
  2006年   578篇
  2005年   531篇
  2004年   438篇
  2003年   419篇
  2002年   336篇
  2001年   304篇
  2000年   225篇
  1999年   212篇
  1998年   167篇
  1997年   157篇
  1996年   125篇
  1995年   87篇
  1994年   104篇
  1993年   63篇
  1992年   44篇
  1991年   31篇
  1990年   39篇
  1989年   18篇
  1988年   15篇
  1987年   25篇
  1986年   22篇
  1985年   28篇
  1984年   25篇
  1983年   7篇
  1982年   9篇
  1981年   6篇
  1980年   10篇
  1976年   2篇
  1975年   4篇
  1974年   5篇
  1973年   4篇
  1951年   5篇
排序方式: 共有10000条查询结果,搜索用时 187 毫秒
1.
2.
Considering the advent of antibiotic resistance, the study of bacterial metabolic behavior stimulated by novel antimicrobial agents becomes a relevant tool to elucidate involved adaptive pathways. Profiling of volatile metabolites was performed to monitor alterations of bacterial metabolism induced by biosynthesized silver nanoparticles (bio-AgNPs). Escherichia coli, Enterococcus faecalis, Klebsiella pneumoniae and Proteus mirabilis were isolated from pressure ulcers, and their cultures were prepared in the presence/absence of bio-AgNPs at 12.5, 25 and 50 µg mL−1. Headspace solid phase microextraction associated to gas chromatography–mass spectrometry was the employed analytical platform. At the lower concentration level, the agent promoted positive modulation of products of fermentation routes and bioactive volatiles, indicating an attempt of bacteria to adapt to an ongoing suppression of cellular respiration. Augmented response of aldehydes and other possible products of lipid oxidative cleavage was noticed for increasing levels of bio-AgNPs. The greatest concentration of agent caused a reduction of 44 to 80% in the variety of compounds found in the control samples. Pathway analysis indicated overall inhibition of amino acids and fatty acids routes. The present assessment may provide a deeper understanding of molecular mechanisms of bio-AgNPs and how the metabolic response of bacteria is untangled.  相似文献   
3.
《Journal of dairy science》2022,105(5):4128-4143
Our objective was to evaluate the effects of unprotected choline chloride (Cho) on the ruminal microbiome at 2 dietary neutral detergent fiber (NDF) concentrations. We hypothesized that the effects of Cho on ruminal bacterial populations would depend on NDF. Eight dual-flow continuous-culture fermentors were arranged in a duplicated 4 × 4 Latin square as a 2 × 2 factorial with the following treatments: (1) 30% NDF-control (30% NDF diet, no supplemental choline); (2) 30% NDF-Cho (30% NDF diet plus 1.9 g of choline ion per kg of dry matter); (3) 40% NDF-control (40% NDF diet, no supplemental choline); and (4) 40% NDF-Cho (40% NDF diet plus 1.9 g of choline ion per kg of dry matter). We did 4 fermentation periods of 10 d each and used the last 3 d for collection of samples of solid and liquid digesta effluents for DNA extraction. Overall, 32 solid and 32 liquid samples were analyzed by amplification of the V4 variable region of bacterial 16S rRNA. Data were analyzed with R (R Project for Statistical Computing) and SAS (SAS Institute Inc.) to determine effects of Cho, NDF, and NDF × Cho on taxa relative abundance. The correlation of propionate molar proportion with taxa relative abundance was also analyzed. At the phylum level, relative abundance of Firmicutes in the liquid fraction tended to be greater when Cho was supplemented with a 30% NDF diet. At the order level, Cho increased Coriobacteriales in solid fraction and decreased Fibrobacterales in liquid fraction. Moreover, Cho decreased abundance of Clostridiales and increased Selenomonadales in the solid fraction, only with the 30% NDF diet. For genera, lower abundance of Pseudobutyrivibrio resulted from Cho in solid and liquid fractions. Greater abundance of Succinivibrio in solid and Selenomonas and Selenomonas 1 in liquid resulted from Cho with the 30% NDF diet. Propionate molar proportion was positively correlated with relative abundance of order Selenomonadales in solid and liquid fractions, and with genus Succinivibrio in solid and genera Selenomonas and Selenomonas 1 in liquid. Our results indicate that Cho primarily decreases abundance of bacteria involved in fiber degradation and increases abundance of bacteria mainly involved in nonstructural carbohydrate degradation and synthesis of propionate, particularly when a diet with 30% NDF is provided.  相似文献   
4.
5.
Current ammonia production technologies have a significant carbon footprint. In this study, we present a process synthesis and global optimization framework to discover the efficient utilization of renewable resources in ammonia production. Competing technologies are incorporated in a process superstructure where biomass, wind, and solar routes are compared with the natural gas-based reference case. A deterministic global optimization-based branch-and-bound algorithm is used to solve the resulting large-scale nonconvex mixed-integer nonlinear programming problem (MINLP). Case studies for Texas, California, and Iowa are conducted to examine the effects of different feedstock prices and availabilities. Results indicate that profitability of ammonia production is highly sensitive to feedstock and electricity prices, as well as greenhouse gas (GHG) restrictions. Under strict 75% GHG reductions, biomass to ammonia route is found to be competitive with natural gas route, whereas wind and solar to ammonia routes require further improvement to compete with those two routes. © 2018 American Institute of Chemical Engineers AIChE J, 65: e16498 2019  相似文献   
6.
A simple, cost-effective, and novel chemical sensor for ammonia (NH3) gas detection was developed from polyaniline (PANI)/quail eggshell (QES) composites. QES is a natural waste enriched in calcium carbonate. In this work, pure PANI was synthesized from chemical oxidation method and PANI/QES composites were prepared from physical mixing of QES with the synthesized PANI at different mass ratio. A series of complementary techniques including Fourier transform infrared and ultraviolet-visible spectrometers, scanning electron microscope with energy dispersive detection coupled with mapping, thermogravimetric analysis, and X-ray diffractometer were used to characterize the physicochemical and textural properties of the biocomposites. From the results, PANI/QES composite with a mass ratio of 1 exhibited the lowest NH3 detection limit of 5.24 ppm with a linear correlation coefficient (R2) of close to unity (0.9932) between the signal and NH3 gas concentration. As a whole, the PANI/QES biocomposites synthesized from this work exhibited excellent selectivity toward NH3 gas even in the presence of other gas impurities, such as acetone, ethanol, and hexane. For the sensor reusability, the PANI/QES biocomposites can be reused in the application of NH3 gas detection for at least 4 cycles.  相似文献   
7.
There are many potential causes of corrosion in animal buildings. Animals exhale large quantities of moisture into the air creating high relative humidity in the building if the moisture is not properly vented. High humidity increases the potential for condensation. In addition, ammonia may be found in large quantities in animal buildings. Ammonia is released from manure and urine. In addition, ammonium chloride is used as a nitrogen source in fertilisers. In this study, the atmospheric corrosion of hot-dip-galvanised steel and zinc alloy-coated steel such as zinc–aluminium and zinc–aluminium–magnesium has been studied in atmospheres containing different levels of ammonia. Investigations have also been conducted at different levels of ammonium chloride. The results are discussed in view of the mechanisms of corrosion of zinc and zinc alloy-coated steel in ammonia and ammonium chloride-containing environments.  相似文献   
8.
Context: The administration of pharmabiotics is a promising alternative to antimicrobial drugs for the treatment and/or prevention of female urogenital infections.

Objective: To design pharmabiotic formulations including bioactive ingredients of microbial origin combined with non-microbial substances and then to evaluate the stability of the combinations during freeze-drying and storage.

Materials and methods: Different formulations including Lactobacillus gasseri CRL 1263, Lactobacillus salivarius CRL 1328, salivaricin CRL 1328 (a bacteriocin) and non-microbial compounds (lactose, inulin and ascorbic acid) were assayed, and the ingredients were freeze-dried together or separately. The formulations were stored in gelatin capsules at 4?°C for 360?d.

Results: The viability of lactobacilli was affected to different extents depending on the strains and on the formulations assayed. L. salivarius and ascorbic acid were successfully combined only after the freeze-drying process. Salivaricin activity was not detected in formulations containing L. gasseri. However, when combined with ascorbic acid, lactose, inulin or L. salivarius, the bacteriocin maintained its activity for 360?d. The selected microorganisms proved to be compatible for their inclusion in multi-strain formulations together with lactose, inulin and ascorbic acid. Salivaricin could be included only in a L. salivarius CRL 1328 single-strain formulation together with non-microbial substances.

Conclusions: This study provides new insights into the design of urogenital pharmabiotics combining beneficial lactobacilli, salivaricin CRL 1328 and compounds with different functionalities.  相似文献   
9.
In recent years, there has been an increased interest in the design and use of iron oxide materials with nanoscale dimensions for magnetic, catalytic, biomedical, and electronic applications. The increased manufacture and use of iron oxide nanoparticles (IONPs) in consumer products as well as industrial processes is expected to lead to the unintentional release of IONPs into the environment. The impact of IONPs on the environment and on biological species is not well understood but remains a concern due to the increased chemical reactivity of nanoparticles relative to their bulk counterparts. This review article describes the impact of IONPs on cellular genetic components. The mutagenic impact of IONPs may damage an organism’s ability to develop or reproduce. To date, there has been experimental evidence of IONPs having mutagenic interactions on human cell lines including lymphoblastoids, fibroblasts, microvascular endothelial cells, bone marrow cells, lung epithelial cells, alveolar type II like epithelial cells, bronchial fibroblasts, skin epithelial cells, hepatocytes, cerebral endothelial cells, fibrosarcoma cells, breast carcinoma cells, lung carcinoma cells, and cervix carcinoma cells. Other cell lines including the Chinese hamster ovary cells, mouse fibroblast cells, murine fibroblast cells, Mytilus galloprovincialis sperm cells, mice lung cells, murine alveolar macrophages, mice hepatic and renal tissue cells, and vero cells have also shown mutagenic effects upon exposure to IONPs. We further show the influence of IONPs on microorganisms in the presence and absence of dissolved organic carbon. The results shed light on the transformations IONPs undergo in the environment and the nature of the potential mutagenic impact on biological cells.  相似文献   
10.
Abnormal activation of Toll-like receptor (TLRs) signaling can result in colon cancer development. The aim of this study was to investigate the expression of important TLRs in different histological types of colorectal polyps and evaluate their relationship with intestinal microbiota. The expression levels of TLR2, 3, 4, and 5 were analyzed in intestinal biopsy specimens of 21 hyperplastic polyp (HP), 16 sessile serrated adenoma (SSA), 29 tubular adenoma (TA), 21 villous/tubulovillous (VP/TVP) cases, and 31 normal controls. In addition, selected gut bacteria including Streptococcus bovis, Enterococcus faecalis, Enterotoxigenic Bacteroides fragilis (ETBF), Fusobacterium nucleatum, Porphyromonas spp., Lactobacillus spp., Roseburia spp., and Bifidobacterium spp. were quantified in fecal samples using absolute qRT PCR, and, finally, the association between TLRs and these gut microbiota- was evaluated by Spearman’s correlation coefficient. Higher expression of TLR2 and TLR4 in VP/TVP and TA, and lower expression levels of TLR3 and TLR5 in all type of polyps were observed. The differences in TLR expression patterns was not only dependent on the histology, location, size, and dysplasia grade of polyps but also related to the intestinal microbiota patterns. TLR2 and TLR4 expression was directly associated with the F. nucleatum, E. faecalis, S. bovis, Porphyromonas, and inversely to Bifidobacterium, Lactobacillus, and Roseburia quantity. Furthermore, TLR3 and TLR5 expression was directly associated with Bifidobacterium, Roseburia, and Lactobacillus quantity. Our results suggest a possible critical role of TLRs during colorectal polyp progression. An abnormal regulation of TLRs in relation to gut microbial quantity may contribute to carcinogenesis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号