首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   73083篇
  免费   7447篇
  国内免费   5187篇
电工技术   4575篇
技术理论   1篇
综合类   6439篇
化学工业   7553篇
金属工艺   4051篇
机械仪表   5872篇
建筑科学   3230篇
矿业工程   2689篇
能源动力   2177篇
轻工业   3817篇
水利工程   1375篇
石油天然气   2733篇
武器工业   1022篇
无线电   11507篇
一般工业技术   6838篇
冶金工业   3064篇
原子能技术   1195篇
自动化技术   17579篇
  2024年   218篇
  2023年   936篇
  2022年   1717篇
  2021年   2132篇
  2020年   2301篇
  2019年   1965篇
  2018年   1928篇
  2017年   2886篇
  2016年   3120篇
  2015年   3610篇
  2014年   5166篇
  2013年   5089篇
  2012年   6141篇
  2011年   6415篇
  2010年   4548篇
  2009年   4674篇
  2008年   4373篇
  2007年   5023篇
  2006年   4081篇
  2005年   3230篇
  2004年   2676篇
  2003年   2328篇
  2002年   1874篇
  2001年   1604篇
  2000年   1361篇
  1999年   1089篇
  1998年   914篇
  1997年   945篇
  1996年   717篇
  1995年   597篇
  1994年   458篇
  1993年   345篇
  1992年   304篇
  1991年   239篇
  1990年   190篇
  1989年   126篇
  1988年   91篇
  1987年   47篇
  1986年   47篇
  1985年   39篇
  1984年   38篇
  1983年   21篇
  1982年   18篇
  1981年   17篇
  1980年   23篇
  1979年   5篇
  1978年   6篇
  1977年   4篇
  1975年   10篇
  1959年   8篇
排序方式: 共有10000条查询结果,搜索用时 234 毫秒
1.
2.
Monitoring the temperature in liquid hydrogen (LH2) storage tanks on ships is important for the safety of maritime navigation. In addition, accurate temperature measurement is also required for commercial transactions. Temperature and pressure define the density of liquid hydrogen, which is directly linked to trading interests. In this study, we developed and tested a liquid hydrogen temperature monitoring system that uses platinum resistance sensors with a nominal electrical resistance of approximately 1000 Ω at room temperature, PT-1000, for marine applications. The temperature measurements were carried out using a newly developed temperature monitoring system under different pressure conditions. The measured values are compared with a calibrated reference PT-1000 resistance thermometer. We confirm a measurement accuracy of ±50 mK in a pressure range of 0.1 MPa–0.5 MPa.  相似文献   
3.
随着海洋资源勘探和海洋污染物监控工作的开展,水文数据的监测和采集等已经成为重要的研究方向。其中,水下无线传感器网络在水文数据采集过程中起着举足轻重的作用。本文研究的是水下无线传感器二维监测网络模型中,传感器节点数据采集的问题,其设计方法是通过自组织映射(Self-organizing mapping,SOM)对传感器节点进行路径最优化处理,结合优化的路径图形和K-means算法找到路径内部聚合点,利用聚合点和传感器的节点得到传感器通信半径内的数据采集点,最后通过SOM得到水下机器人(Autonomous underwater vehicle,AUV)到各个数据采集点采集数据的最优路径。经过实验验证,在水下1 200 m×1 750 m范围内布置52个传感器节点的情景下,数据采集点相比于传感器节点路径规划采用相同的采集顺序得到的路径优化了6.7%;对数据采集点重新进行自组织路径规划得到的路径比传感器结点路径的最优解提高了12.2%。增加传感器节点的数量,其结果也大致相同,因此采用该方法可以提高水下机器人采集数据的效率。  相似文献   
4.
《云南化工》2019,(9):59-60
扩展有限元法是近年经过大量运用的,在传统有限元的范围中求解不连续问题一种有效计算方法,它是基于单位分解的思想,在计算不连续问题时加入跳跃函数。以ABAQUS为平台,基于扩展有限元方法 (XFEM),以含双穿透型裂纹的有限宽板受横向拉伸载荷为力学模型,建立相应的裂纹尖端应力的有限元模型,研究焊接接头区域不同间距双裂纹相互作用对裂纹扩展速率的影响。结果表明:双裂纹间距的的大小并没有对裂纹的扩展速率产生影响。  相似文献   
5.
In this study, a three-dimensional model was established using the lattice Boltzmann method (LBM) to study the internal ice melting process of the gas diffusion layer (GDL) of the proton exchange membrane fuel cell (PEMFC). The single-point second-order curved boundary condition was adopted. The effects of GDL carbon fiber number, growth slope of the number of carbon fibers and carbon fiber diameter on ice melting were studied. The results were revealed that the temperature in the middle and lower part of the gradient distribution GDL is significantly higher than that of the no-gradient GDL. With the increase of the growth slope of the number of carbon fiber, the temperature and melting rate gradually increase, and the position of the solid-liquid interface gradually decreases. The decrease in the number of carbon fibers has a similar effect as the increase in the growth slope of the number of carbon fibers. In addition, as the diameter of the carbon fiber increases, the position of the solid-liquid interface gradually decreases first and then increases.  相似文献   
6.
Fire spread and growth on real‐scale four cushion mock‐ups of residential upholstered furniture (RUF) were investigated with the goal of identifying whether changes in five classes of materials (barrier, flexible polyurethane foam, polyester fiber wrap, upholstery fabric, and sewing thread), referred to as factors, resulted in statistically significant changes in burning behavior. A fractional factorial experimental design plus practical considerations yielded a test matrix with 20 material combinations. Experiments were repeated a minimum of two times. Measurements included fire spread rates derived from video recordings and heat release rates (HRRs). A total of 13 experimental parameters (3 based on the videos and 10 on the HRR results), referred to as responses, characterized the measurements. Statistical analyses based on Main Effects Plots (main effects) and Block Plots (main effects and factor interactions) were used. The results showed that three of the factors resulted in statistically significant effects on varying numbers of the 13 responses. The Barrier and Fabric factors had the strongest main effects with roughly comparable magnitudes. Foam was statistically significant for fewer of the responses and its overall strength was weaker than for Barrier and Fabric. No statistically significant main effects were identified for Wrap or Thread. Multiple two‐term interactions between factors were identified as being statistically significant. The Barrier*Fabric interaction resulted in the highest number of and strongest statistically significant effects. The existence of two‐term interactions means that it will be necessary to consider their effects in approaches designed to predict the burning behavior of RUF.  相似文献   
7.
《Ceramics International》2022,48(11):15243-15251
Green combustion was used to prepare a ferrite composition of Mg0.4Zn0.6Fe2O4 using a blend of fresh lemon juice as a natural fuel-reductant. Effect of heat treatment on phase, morphological, dielectric, and humidity sensor properties is discussed. The formation of a cubic spinel ferrite has been established by XRD-diffraction and vibrational spectroscopic studies. The experimental lattice parameter ranges from 8.3721 to 8.3631 Å. The broadening of octahedral band (υ2) in the vibrational spectra is an identification for the existence of ferrite nanoparticles in various sizes. The typical crystallite size ranges from 10.2 to 36.9 nm. Using micrographs obtained from field-effect scanning electron microscopy (FESEM), researchers observed a spherical-shaped microstructure with agglomerated nanoparticles. Dielectric investigations have shown that the current ferrite composition has typical dielectric dispersion. The highest reported value for saturation magnetization (Ms) in the present study is 33 emu/g. Magnetic behaviour is primarily influenced by magnetocrystalline anisotropy, cation distribution, and crystallite size. The existence of void spaces in the sintered samples, as well as their porous nature, rendered them suitable for humidity sensor applications. Sintered samples have good sensing capability at 900 °C. The current findings are integrated in terms of cation distribution and magnetocrystalline anisotropy, assuming fine size effects of ferrite nanoparticles.  相似文献   
8.
《Ceramics International》2022,48(11):15043-15055
This work reports magnetic permeability and ammonia gas sensing characteristics of La3+ substituted Co–Zn nano ferrites possessing chemical formula Co0.7Zn0.3LaxFe2-2xO4 (x = 0–0.1) synthesized by a sol-gel route. Refinement of X-ray diffraction (XRD) patterns of the ferrite powders by the Rietveld technique has revealed the creation of single-phase spinel structure. The tenancy of constituent cations at tetrahedral/octahedral sites was obtained from the refinement of XRD. The crystallite sizes calculated from the W–H method vary from 20 to 24 nm. The scanning electron microscope (SEM) profiles of the ferrite samples were analyzed for the morphological details. The energy dispersive X-ray analysis (EDAX) patterns of the samples were obtained to test the elemental purity of the ferrites within their stoichiometry. The transmission electron microscope (TEM) image of the ferrite (x = 0.1) exhibits the spherical and oval shaped particles with a mean size of 20 nm. Fourier transform infra-red (FTIR) spectra were analyzed to confirm the superseding of La3+ cations at octahedral sites. The Brunauer-Emmett-Teller (BET) analysis of nitrogen adsorption-desorption isotherms of the ferrites was performed to investigate the porous structure and to determine the surface area of the nanocrystalline ferrites. The oxidation states of the constituent ions were confirmed by means of X-ray photoelectron spectroscopy (XPS). The complex permeability as a function of frequency was studied to explore the effects of structural parameters on the magnetic behaviour of the ferrites. Analysis of gas sensing properties of the ferrites have proved that the Co–Zn–La ferrite with controlled La composition can be utilized as an effective ammonia gas sensing material in commercial gas sensors.  相似文献   
9.
《Ceramics International》2021,47(23):33353-33362
High thermal conductivity Si3N4 ceramics were fabricated using a one-step method consisting of reaction-bonded Si3N4 (RBSN) and post-sintering. The influence of Si content on nitridation rate, β/(α+β) phase rate, thermal conductivity and mechanical properties was investigated in this work. It is of special interest to note that the thermal conductivity showed a tendency to increase first and then decrease with increasing Si content. This experimental result shows that the optimal thermal conductivity and fracture toughness were obtained to be 66 W (m K)-1 and 12.0 MPa m1/2, respectively. As a comparison, the nitridation rate and β/(α+β) phase rate in a static pressure nitriding system, i.e., 97% (MS10), 97% (MS15), 97% (MS20) and 8.3% (MS10), 8.3% (MS15), 8.9% (MS20), respectively, have obvious advantages over those in a flowing nitriding system, i.e., 91% (MS10), 91% (MS15), 93% (MS20) and 3.1% (MS10), 3.3% (MS15), 3.3% (MS20), respectively. Moreover, high lattice integrity of the β-Si3N4 phase was observed, which can effectively confine O atoms into the β-Si3N4 lattice using MgO as a sintering additive. This result indicates that one-step sintering can provide a new route to prepare Si3N4 ceramics with a good combination of thermal conductivity and mechanical properties.  相似文献   
10.
In the context of the high-level radioactive waste disposal CIGEO, the corrosion rate due to microbially influenced corrosion (MIC) has to be evaluated. In France, it is envisaged to dispose of high- and intermediate-level long-lived radioactive waste at a depth of 500 m in a deep geological disposal, drilled in the Callovo-Oxfordian claystone (Cox) formation. To do so, a carbon steel casing will be inserted inside disposal cells, which are horizontal tunnels drilled in the Cox. A specific cement grout will be injected between the carbon steel casing and the claystone. A study was conducted to evaluate the possibility of MIC on carbon steel in the foreseeable high radioactive waste disposal. The corrosiveness of various environments was investigated at 50°C and 80°C with or without microorganisms enriched from samples of Andra's underground research laboratory. The monitoring of corrosion during the experiments was ensured using gravimetric method and real-time corrosion monitoring using sensors based on the measurements of the electrical resistance. The corrosion data were completed with microbiological analyses including cultural and molecular characterizations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号