首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   90898篇
  免费   7485篇
  国内免费   5004篇
电工技术   2754篇
技术理论   5篇
综合类   7479篇
化学工业   4962篇
金属工艺   20198篇
机械仪表   4703篇
建筑科学   18974篇
矿业工程   5393篇
能源动力   1742篇
轻工业   1401篇
水利工程   1527篇
石油天然气   2555篇
武器工业   842篇
无线电   1702篇
一般工业技术   8034篇
冶金工业   14828篇
原子能技术   510篇
自动化技术   5778篇
  2024年   190篇
  2023年   858篇
  2022年   2257篇
  2021年   2670篇
  2020年   2812篇
  2019年   2078篇
  2018年   1757篇
  2017年   2586篇
  2016年   2891篇
  2015年   3296篇
  2014年   5961篇
  2013年   5090篇
  2012年   6943篇
  2011年   7782篇
  2010年   5955篇
  2009年   5958篇
  2008年   5106篇
  2007年   6320篇
  2006年   5566篇
  2005年   4614篇
  2004年   3852篇
  2003年   3351篇
  2002年   2817篇
  2001年   2341篇
  2000年   1944篇
  1999年   1552篇
  1998年   1242篇
  1997年   1174篇
  1996年   992篇
  1995年   736篇
  1994年   682篇
  1993年   447篇
  1992年   393篇
  1991年   272篇
  1990年   232篇
  1989年   199篇
  1988年   139篇
  1987年   61篇
  1986年   37篇
  1985年   40篇
  1984年   29篇
  1983年   25篇
  1982年   30篇
  1981年   20篇
  1980年   41篇
  1979年   7篇
  1970年   3篇
  1959年   12篇
  1957年   3篇
  1951年   4篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
In this paper, a new carbon support with a large number of mesoporous-structures is selected to prepare Pt/C catalysts. Transmission electron microscope (TEM) results show that the Pt/3# catalyst presents a sponge-like morphology, Pt particles are not only evenly distributed on the surface of carbon support, but also the smaller Pt particles are deposited in the mesoporous inside the support. The average diameter of Pt particles is only 2.8 nm. The membrane electrode assembly (MEA) based on Pt/3# catalyst also shows excellent performance. In conclusion, the 3# support is an idea carbon support for PEMFC, which helps to improve the oxygen reduction reaction (ORR) activity of the catalyst. Based on the “internal-Pt” structure of the support mesoporous, the efficient three-phase boundaries (TPBs) are construct to avoid the poisoning effect of ionomer on the nano-metal particles, reduce the activation impedance and oxygen mass transfer impedance, and improve the reaction efficiency.  相似文献   
2.
This work investigates selective Ni locations over Ni/CeZrOx–Al2O3 catalysts at different Ni loading contents and their influences on reaction pathways in ethanol steam reforming (ESR). Depending on the Ni loading contents, the added Ni selectively interacts with CeZrOx–Al2O3, resulting in the stepwise locations of Ni over CeZrOx–Al2O3. This behavior induces a remarkable difference in hydrogen production and coke formation in ESR. The selective interaction between Ni and CeZrOx for 10-wt.% Ni generates more oxygen vacancies in the CeZrOx lattice. The Ni sites near the oxygen vacancies enhance reforming via steam activation, resulting in the highest hydrogen production rate of 1863.0 μmol/gcat·min. In contrast, for 15 and 20-wt.% Ni, excessive Ni is additionally deposited on Al2O3 after the saturation of Ni–CeZrOx interactions. These Ni sites on Al2O3 accelerate coking from the ethylene produced on the acidic sites, resulting in a high coke amount of 19.1 mgc/gcat·h (20Ni/CZ-Al).  相似文献   
3.
Ammonia generation was studied in the reaction between water and nitrogen-containing iron at 323 K and atmospheric pressure. Similar to metallic Fe, the interstitial compound Fe3N reduced water through Fe oxidation to produce hydrogen gas, while the N combined with atomic hydrogen to produce ammonia as a byproduct. The addition of carbon dioxide to this system accelerated the reaction with concomitant consumption of carbon dioxide. The promoted ammonia production upon addition of carbon dioxide can be attributed to the generation of atomic hydrogen from the redox reaction of carbonic acid and Fe, as well as removal of used Fe from the reaction system through the formation of a soluble carbonato complex. When carbonate was added to the reaction system, the production rates of ammonia and hydrogen increased further. The results here confirmed that ammonia can be synthesized from iron nitride under mild conditions by utilizing carbon dioxide.  相似文献   
4.
Deep geological repositories for radioactive waste contain metallic materials, either used to construct disposal canisters or as low-/intermediate-level waste (L/ILW). The safety relevance of corrosion is linked to canister lifetime in the former case and gas generation in the latter. More specifically, the Belgian “supercontainer” concept envisages mild steel for the used fuel disposal canister, and in the case of the Swiss L/ILW repository, mild steels are the largest metallic waste component due to the decommissioning of civilian power-generating facilities. For these circumstances, the corrosion environment is dominated by the chemistry of cement, which is used as buffer or backfill material. The corrosion behaviour of mild steel in anoxic environments was studied through the analysis of the hydrogen end-product. Hydrogen analysis was conducted by periodically purging the cell head-space and analysing the gas using a solid-state hydrogen sensor. While this method is limited to providing only uniform corrosion rates averaged over periods of time, ranging from weeks to months, it provides excellent resolution and sensitivity. The test cell environments were matched against the anticipated Belgian high-level waste and Swiss L/ILW repository environments, and also against experiments that have been conducted by other researchers for comparative purposes. Samples were exposed to synthetic cement pore waters, representing fresh and degraded cement. In young cement waters, the formation of initial corrosion products resulted in steel wire corrosion rates of the order of µm/year, which, at 80°C rapidly declined to ∼10 nm/year. In contrast, SA516 grade 70 steel plate corroded much more slowly under similar conditions. In aged cement waters, initial corrosion rates were higher but declined faster towards a longer-term rate of ∼10 nm/year. 316L stainless steel, embedded in cementitious material, corroded at a rate of <1 nm/year at 50°C.  相似文献   
5.
The influence of cementite spheroidization on the impact toughness and electrochemical properties of a high-carbon steel has been thoroughly investigated in this study. Heavy warm rolling, followed by 2 h of annealing, has resulted in near-complete spheroidization, leading to a microstructure consisting of nano-cementite globules dispersed in the ultrafine-grained ferritic matrix. The Charpy impact test exhibited superior impact toughness with increased spheroidization. It is validated by the presence of abundant dimples in the fractographs of spheroidized specimens, in contrast to the as-received one that experienced a brittle failure due to its lamellar pearlitic structure. Potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) carried out in a 3.5% NaCl solution revealed that the corrosion resistance of the alloy gets improved with the increase in the degree of spheroidization. This is attributed to the lower susceptibility of the spheroidized specimen to microgalvanic corrosion owing to the minimum area of contact between nano-spheroidized cementite and ferrite, as elucidated with the help of EIS results aided by equivalent electrical circuit model.  相似文献   
6.
Proton exchange membrane fuel cells (PEMFCs) durability has been severely hindered by carbon support poor stability in the cathodic Pt-based catalyst. Herein, a high-surface-area nitrogen-doped graphitic nanocarbon (N-G-CA) with mesopores is developed as Pt support to address PEMFCs durability challenge. Resorcinol-formaldehyde aerogel pyrolyzed carbon aerogel is selected as N-G-CA raw material. Nitrogen atoms are introduced into carbon aerogel via NH3 heat treatment. Then, nitrogen-doped carbon aerogel is transferred into N-G-CA via heating together with transition-metal salts (one of FeCl3, FeCl2, CoCl2, or MnCl2, etc.) at 1200 °C. As ORR catalyst, Pt/N-G-CA half-wave potential only lost 10 mV, after 30, 000 cycles accelerated aging test in the rotating-desk-electrode. Only 12 mV voltage loss at 1.5 A/cm2 is observed, after 5, 000 cycles for membrane electrode. Pt/N-G-CA exhibits superior durability and activity than commercial Pt/C. High durability of Pt/N-G-CA is due to N-G-CA high graphitization extent, as well as the interactions between doping nitrogen and Pt. N-G-CA is promising as stable support for durable Pt-based catalysts in PEMFCs, thanks to enhanced carbon corrosion resistance, uniformly dispersed Pt, and strong support-metals interaction.  相似文献   
7.
In the context of the high-level radioactive waste disposal CIGEO, the corrosion rate due to microbially influenced corrosion (MIC) has to be evaluated. In France, it is envisaged to dispose of high- and intermediate-level long-lived radioactive waste at a depth of 500 m in a deep geological disposal, drilled in the Callovo-Oxfordian claystone (Cox) formation. To do so, a carbon steel casing will be inserted inside disposal cells, which are horizontal tunnels drilled in the Cox. A specific cement grout will be injected between the carbon steel casing and the claystone. A study was conducted to evaluate the possibility of MIC on carbon steel in the foreseeable high radioactive waste disposal. The corrosiveness of various environments was investigated at 50°C and 80°C with or without microorganisms enriched from samples of Andra's underground research laboratory. The monitoring of corrosion during the experiments was ensured using gravimetric method and real-time corrosion monitoring using sensors based on the measurements of the electrical resistance. The corrosion data were completed with microbiological analyses including cultural and molecular characterizations.  相似文献   
8.
为了解破碎围岩分别采用锚杆支护、锚喷支护以及锚喷+锚索耦合三种支护方式下的支护效果,进而为破碎围岩巷道选择合理的支护方式提供参考。通过借助FLAC3D软件建立数值模型,分析不同支护条件下的破碎围岩巷道位移量、应力分布以及塑性区的时空演化特征。结果表明,采用锚喷+锚索耦合支护时,可以较好的控制巷道围岩的位移量、减小应力集中效应、缩小塑性区的影响范围。  相似文献   
9.
The corrosion mechanisms of T24, T92, VM12, and AISI 304 steels are studied under the influence of NaCl–KCl, NaCl–Na2SO4, and KCl–K2SO4 salt mixtures in a dry air atmosphere at 650°C for 15 days. NaCl–KCl was the most aggressive deposit and AISI 304 stainless steel exhibited the highest corrosion resistance. There was no relation between the Cr content of the ferritic steels and their corrosion resistance in NaCl–KCl. In contrast, the resistance of high-Cr steels was better when exposed to NaCl–Na2SO4 and KCl–K2SO4. The high-Cr and the low-Cr steels were more susceptible to NaCl–Na2SO4 and to KCl–K2SO4, respectively.  相似文献   
10.
为研究钢管套筒灌浆连接轴向受拉破坏过程及破坏机理,试验中设计了16组48个钢管套筒灌浆连接试件,试件采用钢板代替圆钢管,并进行静载试验。分析了灌浆料裂缝扩展过程、荷载-相对位移曲线,并对抗剪键高距比、灌浆料厚度、侧向力等因素对破坏过程及承载力的影响进行分析。结果表明:对于不设置抗剪键的套筒灌浆连接试件,斜裂缝随机产生,裂缝分布不均匀;对于设置抗剪键的套筒灌浆连接试件,裂缝首先出现在底部抗剪键位置处,与水平方向夹角约为30°,随后在中部和上部抗剪键位置处分别出现斜裂缝。由于每个抗剪键上荷载分担并不均匀,与抗剪键接触的灌浆料逐渐达到极限压应力,达到极限状态时,承载力全部由抗剪键间的机械咬合力承担,在连接承载力中,可忽略摩擦力和胶结力作用。随着抗剪键高距比h/s增大,各试件初始剪切刚度相差不大,承载力增大,但增幅逐渐减小,建议抗剪键高距比0.06g/s>0.3,同时需要满足灌浆料灌注的施工要求。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号