首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   42383篇
  免费   3837篇
  国内免费   1899篇
电工技术   2255篇
综合类   3730篇
化学工业   9217篇
金属工艺   2235篇
机械仪表   1766篇
建筑科学   11063篇
矿业工程   1919篇
能源动力   1429篇
轻工业   1596篇
水利工程   2015篇
石油天然气   826篇
武器工业   234篇
无线电   2478篇
一般工业技术   4077篇
冶金工业   1239篇
原子能技术   429篇
自动化技术   1611篇
  2024年   151篇
  2023年   538篇
  2022年   1071篇
  2021年   1302篇
  2020年   1194篇
  2019年   1016篇
  2018年   997篇
  2017年   1357篇
  2016年   1333篇
  2015年   1548篇
  2014年   2654篇
  2013年   2241篇
  2012年   3074篇
  2011年   3346篇
  2010年   2602篇
  2009年   2644篇
  2008年   2390篇
  2007年   2910篇
  2006年   2621篇
  2005年   2213篇
  2004年   1692篇
  2003年   1475篇
  2002年   1336篇
  2001年   1156篇
  2000年   1022篇
  1999年   798篇
  1998年   598篇
  1997年   511篇
  1996年   404篇
  1995年   337篇
  1994年   296篇
  1993年   219篇
  1992年   236篇
  1991年   203篇
  1990年   165篇
  1989年   156篇
  1988年   54篇
  1987年   49篇
  1986年   38篇
  1985年   37篇
  1984年   29篇
  1983年   16篇
  1982年   23篇
  1981年   9篇
  1980年   23篇
  1979年   8篇
  1975年   4篇
  1974年   3篇
  1959年   5篇
  1951年   5篇
排序方式: 共有10000条查询结果,搜索用时 250 毫秒
1.
Mangiferin (MGF) is a phenolic compound isolated from mango, but its poor solubility significantly limits its use. In this study, MGF was embedded into the inner aqueous phase of W1/O/W2 emulsions. Firstly, the dissolution method of MGF was determined. MGF remained stable in solution with pH 13 at 30 min, and its solubility reached 10 mg mL−1. When the pH of MGF solutions was adjusted from pH 13 to pH 6, MGF did not immediately crystallise, providing sufficient time to construct the MGF-loaded W1/O/W2 emulsions. Subsequently, the MGF-loaded W1/O/W2 emulsions were constructed using polyglycerol polyricinoleate (PGPR) and calcium caseinate (CAS). The formation and stability of the W1/O/W2 emulsions were investigated. The MGF-loaded W1/O/W2 emulsions stabilised with 1% PGPR and 1% – 3% CAS exhibited a low viscosity, limited loading capacity, and poor stability. Conversely, the MGF-loaded W1/O/W2 emulsions stabilised by 3%PGPR–3%CAS exhibited optimal loading capacity (encapsulation efficiency = 95.31% and loading efficiency = 0.91%) and stability, which was attributed to the fact that high viscosity and gel state retarded the migration of inner aqueous phase. These results indicated that the W1/O/W2 emulsions stabilised by PGPR and CAS may be a potential alternative for encapsulating mangiferin.  相似文献   
2.
A ring-on-ring (ROR) test is a prevailing test method for evaluating the equi-biaxial strength of glass materials. However, current ROR test standards limit the strength and size of glass to prevent a nonlinear behavior. In this study, the feasibility of ROR testing for non-standard, high-strength glass, such as tempered or ion-exchanged rectangular glass is investigated. To this end, ROR simulation based on theory and experiment is conducted for thirty non-standard glasses with widths of 100–300 mm and aspect ratios of 1.0–2.0. As a result, the maximum measurable stress was about 215.6 MPa for 100 × 200 mm glass and 481.3 MPa for 300 × 600 mm glass with a 3% deviation, which is well above the strength of regular tempered glass. The main purpose of this work is to understand the range of aspect ratio of horizontal and vertical widths of a glass plate that can be evaluated by the standard ROR test.  相似文献   
3.
Engineering new glass compositions have experienced a sturdy tendency to move forward from (educated) trial-and-error to data- and simulation-driven strategies. In this work, we developed a computer program that combines data-driven predictive models (in this case, neural networks) with a genetic algorithm to design glass compositions with desired combinations of properties. First, we induced predictive models for the glass transition temperature (Tg) using a dataset of 45,302 compositions with 39 different chemical elements, and for the refractive index (nd) using a dataset of 41,225 compositions with 38 different chemical elements. Then, we searched for relevant glass compositions using a genetic algorithm informed by a design trend of glasses having high nd (1.7 or more) and low Tg (500 °C or less). Two candidate compositions suggested by the combined algorithms were selected and produced in the laboratory. These compositions are significantly different from those in the datasets used to induce the predictive models, showing that the used method is indeed capable of exploration. Both glasses met the constraints of the work, which supports the proposed framework. Therefore, this new tool can be immediately used for accelerating the design of new glasses. These results are a stepping stone in the pathway of machine learning-guided design of novel glasses.  相似文献   
4.
《Ceramics International》2022,48(18):25975-25983
This work reports the innovative development of a borosilicate glass/Al2O3 tape for LTCC applications using an eco-friendly aqueous tape casting slurry. Polyvinylpyrrolidone (PVP) and polyacrylic acid (PAA) were the respective dispersants, while carboxymethyl cellulose (CMC) and styrene acrylic emulsion (SA) were the respective binders. The results showed that PVP was more suitable than PAA as the dispersant for the aqueous casting slurry, and that 1.5 wt% PVP would achieve well dispersion of CABS glass/Al2O3 powder in the aqueous slurry. Moreover, a small amount of 2.0 wt% CMC binder could yield smooth CABS glass/Al2O3 tapes crack free. A high-quality CABS glass/Al2O3 tape with a smooth surface was made from an aqueous slurry containing 1.5 wt% PVP dispersant, 2.0 wt% CMC binder, and 2.0 wt% PEG-400 plasticizer. The density, tensile strength, and surface roughness of the green tape were 2.05 g/cm3, 0.87 MPa, and 148 nm, respectively. The resulting CABS glass/Al2O3 composites sintered at 875 °C exhibited a bulk density of 3.14 g/cm3, a dielectric constant of 8.09, a dielectric loss of 1.0 × 10?3, a flexural strength of 213 MPa, a thermal expansion coefficient of 5.30 ppm/°C, and a thermal conductivity of 3.2 W m?1 K?1, thus demonstrating its broad prospects in LTCC applications.  相似文献   
5.
《Ceramics International》2022,48(18):26055-26062
Indo-Pacific glass beads are produced by the drawn technique, which originates from South Asia, and their chemical compositions are unique in South and Southeast Asia. However, a small number of Indo-Pacific beads with Sassanian glass compositions are excavated in Asia and Africa after the 3rd c. CE, and their production sites in South/Southeast Asia or in the Sassanian region remain controversial. In this study, 15 drawn glass beads with various colours from Astana necropolis (ca. the 4th-8th c. CE) in Xinjiang, northwest China were investigated by using laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS), Scanning Electron Microscope, Raman spectroscopy and visible to near-infrared spectroscopy to characterize the production technology and origins. The results show that most Astana glass beads share similar chemical compositions with the glassware from Veh Arda?īr, a famous Sasanian site. Furthermore, Sasanian glass compositions predominate in Indo-Pacific beads in Xinjiang during the 4th-8th c. CE, while popular glass recipes in contemporary South/Southeast Asia are infrequently found; thus, it is deduced that the drawn method should have been mastered by Sasanian craftsmen. Moreover, the cobalt materials in Sasanian glass were imported from further western regions and changed over time. The popular Sasanian glass across central Eurasia reflects the trade monopoly of Sasanian in West and Central Asia, and the land glass bead trade is distinct from the contemporary maritime trade in the Indian and Pacific Oceans.  相似文献   
6.
《云南化工》2019,(9):59-60
扩展有限元法是近年经过大量运用的,在传统有限元的范围中求解不连续问题一种有效计算方法,它是基于单位分解的思想,在计算不连续问题时加入跳跃函数。以ABAQUS为平台,基于扩展有限元方法 (XFEM),以含双穿透型裂纹的有限宽板受横向拉伸载荷为力学模型,建立相应的裂纹尖端应力的有限元模型,研究焊接接头区域不同间距双裂纹相互作用对裂纹扩展速率的影响。结果表明:双裂纹间距的的大小并没有对裂纹的扩展速率产生影响。  相似文献   
7.
The purpose of the current work was to research the effect of alkali metal oxide on the structure, thermal properties, viscosity and chemical stability in the glass system (R2O–CaO–B2O3–SiO2) systematically. Because the glass would emulsify when Li2O was added to the glass batch, this article did not discuss Li2O. The results showed that when the amount of Na2O was less than 4 mol.%, there was a higher interconnectivity of borate and silicate sub-networks in glass, as more mixed Si–O–B bonds were present in glass. The glass samples exhibited excellent thermal properties and chemical stabilities. As the amount of Na2O exceeded 4 mol.%, the interconnectivity of borate and silicate sub-networks was weakened. The thermal properties and chemical stabilities of the glass samples were reduced. The connectivity of the silicate sub-network was weakened slightly as the Na/K ratio varied, and the coefficient of thermal expansion (CTE) of the glass samples gradually increased, and the resistance to thermal shock (RTS) value gradually decreased. Moreover, the viscosity of the glass samples decreased with the ratio of Na/Si and Na/K increased.  相似文献   
8.
Large domain wall (DW) conductivity in an insulating ferroelectric plays an important role in the future nanosensors and nonvolatile memories. However, the wall current was usually too small to drive high-speed memory circuits and other agile nanodevices requiring high output-powers. Here, a large domain-wall current of 67.8 μA in a high on/off ratio of ~4460 was observed in an epitaxial Au/BiFeO3/SrRuO3 thin-film capacitor with the minimized oxygen vacancy concentration. The studies from read current-write voltage hysteresis loops and piezo-response force microscope images consistently showed remaining of partially unswitched domains after application of an opposite poling voltage that increased domain wall density and wall current greatly. A theoretical model was proposed to explain the large wall current. According to this model, the domain reversal occurs with the appearance of head-to-head and tail-to-tail 180° domain walls (DWs), resulting in the formation of highly conductive wall paths. As the applied voltage increased, the domain-wall number increased to enhance the on-state current, in agreement with the measurements of current-voltage curves. This work paves a way to modulate DW currents within epitaxial Au/BiFeO3/SrRuO3 thin-film capacitors through the optimization of both oxygen vacancy and domain wall densities to achieve large output powers of modern domain-wall nanodevices.  相似文献   
9.
Two electron oxygen reduction reaction to produce hydrogen peroxide (H2O2) is a promising alternative technique to the multistep and high energy consumption anthraquinone process. Herein, Ni–Fe layered double hydroxide (NiFe-LDH) has been firstly demonstrated as an efficient bifunctional catalyst to prepare H2O2 by electrochemical oxygen reduction (2e? ORR) and oxygen evolution reaction (OER). Significantly, the NiFe-LDH catalyst possesses a high faraday efficiency of 88.75% for H2O2 preparation in alkaline media. Moreover, the NiFe-LDH catalyst exhibits excellent OER electrocatalytic property with small overpotential of 210 mV at 10 mA cm?2 and high stability in 1 M KOH solution. On this basis, a new reactor has been designed to electrolyze oxygen and generate hydrogen peroxide. Under the ultra-low cell voltage of 1 V, the H2O2 yield reaches to 47.62 mmol gcat?1 h?1. In order to evaluate the application potential of the bifunctional NiFe-LDH catalyst for H2O2 preparation, a 1.5 V dry battery has been used as the power supply, and the output of H2O2 reaches to 83.90 mmol gcat?1 h?1. The excellent electrocatalytic properties of 2e? ORR and OER make NiFe-LDH a promising bifunctional electrocatalyst for future commercialization. Moreover, the well-designed 2e? ORR-OER reactor provides a new strategy for portable production of H2O2.  相似文献   
10.
Ti-based amorphous metallic glasses have excellent mechanical, physical, and chemical properties, which is an important development direction and research hotspot of metal composite reinforcement. As a stable, simple, efficient, and large-scale preparation technology of metallic powders, the gas atomization process provides an effective way of preparing amorphous metallic glasses. In this study, the controllable fabrication of a Ti-based amorphous powder, with high efficiency, has been realized by using gas atomization. The scanning electron microscope, energy-dispersive spectrometer, and X-ray diffraction are used to analyze surface morphology, element distribution, and phase structure, respectively. A microhardness tester is used to measure the mechanical property. An electrochemical workstation is used to characterize corrosion behavior. The results show that as-prepared microparticles are more uniform and exhibit good amorphous characteristics. The mechanical test shows that the hardness of amorphous powder is significantly increased as compared with that before preparation, which has the prospect of being an important part of engineering reinforced materials. Further electrochemical measurement shows that the corrosion resistance of the as-prepared sample is also significantly improved. This study has laid a solid foundation for expanding applications of Ti-based metallic glasses, especially in heavy-duty and corrosive domains.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号