首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13492篇
  免费   1999篇
  国内免费   1695篇
电工技术   1156篇
综合类   1125篇
化学工业   854篇
金属工艺   209篇
机械仪表   1131篇
建筑科学   421篇
矿业工程   197篇
能源动力   240篇
轻工业   79篇
水利工程   315篇
石油天然气   153篇
武器工业   89篇
无线电   1869篇
一般工业技术   1931篇
冶金工业   236篇
原子能技术   7篇
自动化技术   7174篇
  2024年   98篇
  2023年   327篇
  2022年   407篇
  2021年   483篇
  2020年   597篇
  2019年   511篇
  2018年   504篇
  2017年   599篇
  2016年   657篇
  2015年   689篇
  2014年   928篇
  2013年   1385篇
  2012年   1065篇
  2011年   990篇
  2010年   752篇
  2009年   908篇
  2008年   931篇
  2007年   957篇
  2006年   821篇
  2005年   721篇
  2004年   589篇
  2003年   475篇
  2002年   357篇
  2001年   298篇
  2000年   227篇
  1999年   188篇
  1998年   137篇
  1997年   110篇
  1996年   86篇
  1995年   77篇
  1994年   60篇
  1993年   46篇
  1992年   48篇
  1991年   39篇
  1990年   23篇
  1989年   20篇
  1988年   7篇
  1987年   2篇
  1986年   12篇
  1985年   10篇
  1984年   12篇
  1983年   7篇
  1981年   3篇
  1980年   5篇
  1979年   3篇
  1978年   2篇
  1976年   3篇
  1975年   3篇
  1971年   1篇
  1951年   2篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
Two electron oxygen reduction reaction to produce hydrogen peroxide (H2O2) is a promising alternative technique to the multistep and high energy consumption anthraquinone process. Herein, Ni–Fe layered double hydroxide (NiFe-LDH) has been firstly demonstrated as an efficient bifunctional catalyst to prepare H2O2 by electrochemical oxygen reduction (2e? ORR) and oxygen evolution reaction (OER). Significantly, the NiFe-LDH catalyst possesses a high faraday efficiency of 88.75% for H2O2 preparation in alkaline media. Moreover, the NiFe-LDH catalyst exhibits excellent OER electrocatalytic property with small overpotential of 210 mV at 10 mA cm?2 and high stability in 1 M KOH solution. On this basis, a new reactor has been designed to electrolyze oxygen and generate hydrogen peroxide. Under the ultra-low cell voltage of 1 V, the H2O2 yield reaches to 47.62 mmol gcat?1 h?1. In order to evaluate the application potential of the bifunctional NiFe-LDH catalyst for H2O2 preparation, a 1.5 V dry battery has been used as the power supply, and the output of H2O2 reaches to 83.90 mmol gcat?1 h?1. The excellent electrocatalytic properties of 2e? ORR and OER make NiFe-LDH a promising bifunctional electrocatalyst for future commercialization. Moreover, the well-designed 2e? ORR-OER reactor provides a new strategy for portable production of H2O2.  相似文献   
2.
Against the background of smart manufacturing and Industry 4.0, how to achieve real-time scheduling has become a problem to be solved. In this regard, automatic design for shop scheduling based on hyper-heuristics has been widely studied, and a number of reviews and scheduling algorithms have been presented. Few studies, however, have specifically discussed the technical points involved in algorithm development. This study, therefore, constructs a general framework for automatic design for shop scheduling strategies based on hyper-heuristics, and various state-of-the-art technical points in the development process are summarized. First, we summarize the existing types of shop scheduling strategies and classify them using a new classification method. Second, we summarize an automatic design algorithm for shop scheduling. Then, we investigate surrogate-assisted methods that are popular in the current algorithm field. Finally, current problems and challenges are discussed, and potential directions for future research are proposed.  相似文献   
3.
A known strategy for improving the properties of layered oxide electrodes in sodium-ion batteries is the partial substitution of transition metals by Li. Herein, the role of Li as a defect and its impact on sodium storage in P2-Na0.67Mn0.6Ni0.2Li0.2O2 is discussed. In tandem with electrochemical studies, the electronic and atomic structure are studied using solid-state NMR, operando XRD, and density functional theory (DFT). For the as-synthesized material, Li is located in comparable amounts within the sodium and the transition metal oxide (TMO) layers. Desodiation leads to a redistribution of Li ions within the crystal lattice. During charging, Li ions from the Na layer first migrate to the TMO layer before reversing their course at low Na contents. There is little change in the lattice parameters during charging/discharging, indicating stabilization of the P2 structure. This leads to a solid-solution type storage mechanism (sloping voltage profile) and hence excellent cycle life with a capacity of 110 mAh g-1 after 100 cycles. In contrast, the Li-free compositions Na0.67Mn0.6Ni0.4O2 and Na0.67Mn0.8Ni0.2O2 show phase transitions and a stair-case voltage profile. The capacity is found to originate from mainly Ni3+/Ni4+ and O2-/O2-δ redox processes by DFT, although a small contribution from Mn4+/Mn5+ to the capacity cannot be excluded.  相似文献   
4.
Short-term generation scheduling is an important function in daily operational planning of power systems. It is defined as optimal scheduling of power generators over a scheduling period while respecting various generator constraints and system constraints. Objective of the problem includes costs associated with energy production, start-up cost and shut-down cost along with profits. The resulting problem is a large scale nonlinear mixed-integer optimization problem for which there is no exact solution technique available. The solution to the problem can be obtained only by complete enumeration, often at the cost of a prohibitively computation time requirement for realistic power systems. This paper presents a hybrid algorithm which combines Lagrangian Relaxation (LR) together with Evolutionary Algorithm (EA) to solve the problem in cooperative and competitive energy environments. Simulation studies were carried out on different systems containing various numbers of units. The outcomes from different algorithms are compared with that from the proposed hybrid algorithm and the advantages of the proposed algorithm are briefly discussed.  相似文献   
5.
The integration of planning and scheduling decisions in rigorous mathematical models usually results in large scale problems. In order to tackle the problem complexity, decomposition techniques based on duality and information flows between a master and a set of subproblems are widely applied. In this sense, ontologies improve information sharing and communication in enterprises and can even represent holistic mathematical models facilitating the use of analytic tools and providing higher flexibility for model building. In this work, we exploit this ontologies’ capability to address the optimal integration of planning and scheduling using a Lagrangian decomposition approach. Scheduling/planning sub-problems are created for each facility/supply chain entity and their dual solution information is shared by means of the ontological framework. Two case studies based on a STN representation of supply chain planning and scheduling models are presented to emphasize the advantages and limitations of the proposed approach.  相似文献   
6.
In modern cloud data centers, reconfigurable devices (FPGAs) are used as an alternative to Graphics Processing Units to accelerate data-intensive computations (e.g., machine learning, image and signal processing). Currently, FPGAs are configured to execute fixed workloads, repeatedly over long periods of time. This conflicts with the needs, proper to cloud computing, to flexibly allocate different workloads and to offer the use of physical devices to multiple users. This raises the need for novel, efficient FPGA scheduling algorithms that can decide execution orders close to the optimum in a short time. In this context, we propose a novel scheduling heuristic where groups of tasks that execute together are interposed by hardware reconfigurations. Our contribution is based on gathering tasks around a high-latency task that hides the latency of tasks, within the same group, that run in parallel and have shorter latencies. We evaluated our solution on a benchmark of 37500 random workloads, synthesized from realistic designs (i.e., topology, resource occupancy). For this testbench, on average, our heuristic produces optimum makespan solutions in 47.4% of the cases. It produces acceptable solutions for moderately constrained systems (i.e., the deadline falls within 10% of the optimum makespan) in 90.1% of the cases.  相似文献   
7.
In this research, the three‐dimensional structural and colorimetric modeling of three‐dimensional woven fabrics was conducted for accurate color predictions. One‐hundred forty single‐ and double‐layered woven samples in a wide range of colors were produced. With the consideration of their three‐dimensional structural parameters, three‐dimensional color prediction models, K/S‐, R‐, and L*a*b*‐based models, were developed through the optimization of previous two‐dimensional models which have been reported to be the three most accurate models for single‐layered woven structures. The accuracy of the new three‐dimensional models was evaluated by calculating the color differences ΔL*, ΔC*, Δh°, and ΔECMC(2:1) between the measured and the predicted colors of the samples, and then the error values were compared to those of the two‐dimensional models. As a result, there has been an overall improvement in color predictions of all models with a decrease in ΔECMC(2:1) from 10.30 to 5.25 units on average after the three‐dimensional modeling.  相似文献   
8.
The optimization of energy consumption, with consequent cost reduction, is one of the main challenges for the present and future smart grid. Demand response (DR) program is expected to be vital in home energy management system (HEMS) which aims to schedule the operation of appliances to save energy costs by considering customer convenience as well as characteristics of electric appliances. The DR program is a challenging optimization problem especially when the formulations are non-convex or NP-hard problems. In order to solve this challenging optimization problem efficiently, an effective heuristic approach is proposed to achieve a near optimal solution with low computational costs. Different from previously proposed methods in literatures which are not suitable to be run in embedded devices such as a smart meter. The proposed algorithm can be implemented in an embedded device which has severe limitations on memory size and computational power, and can get an optimal value in real-time. Numerical studies were carried out with the data simulating practical scenarios are provided to demonstrate the effectiveness of the proposed method.  相似文献   
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号