首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   25779篇
  免费   2449篇
  国内免费   1268篇
电工技术   1310篇
技术理论   1篇
综合类   2499篇
化学工业   1620篇
金属工艺   1028篇
机械仪表   854篇
建筑科学   9078篇
矿业工程   1517篇
能源动力   1077篇
轻工业   788篇
水利工程   1630篇
石油天然气   679篇
武器工业   114篇
无线电   1825篇
一般工业技术   2545篇
冶金工业   750篇
原子能技术   278篇
自动化技术   1903篇
  2024年   121篇
  2023年   272篇
  2022年   664篇
  2021年   749篇
  2020年   756篇
  2019年   599篇
  2018年   639篇
  2017年   746篇
  2016年   840篇
  2015年   908篇
  2014年   1667篇
  2013年   1470篇
  2012年   1847篇
  2011年   2097篇
  2010年   1644篇
  2009年   1618篇
  2008年   1482篇
  2007年   1850篇
  2006年   1629篇
  2005年   1366篇
  2004年   966篇
  2003年   932篇
  2002年   804篇
  2001年   693篇
  2000年   612篇
  1999年   520篇
  1998年   378篇
  1997年   341篇
  1996年   259篇
  1995年   194篇
  1994年   180篇
  1993年   153篇
  1992年   108篇
  1991年   70篇
  1990年   62篇
  1989年   56篇
  1988年   47篇
  1987年   27篇
  1986年   24篇
  1985年   17篇
  1984年   18篇
  1983年   10篇
  1982年   10篇
  1981年   7篇
  1980年   19篇
  1979年   9篇
  1978年   2篇
  1975年   3篇
  1959年   5篇
  1951年   2篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
《Ceramics International》2022,48(18):25984-25995
Design of architectured composites with layered-ordered structure can solve the strength-toughness mismatch problem of structural materials. In the present study, heterostructure Ti6Al4V/TiAl laminated composite sheets with different thicknesses of interface layer and TiAl composite layer were successfully produced by hot-pressing technology. The effects of interface regulation and laminated structure on their mechanical properties, crack propagation, and fracture behavior were studied. The results indicated that compressive strength of the sheets increased with the decrease in interface thickness. Compressive strength of TiAl composite sheet with thicker composite layer reached 1481.55 MPa at the arrester orientation with sintering holding time of 40 min, which was 25.96% higher than that of the sheet obtained at 120 min. Analysis indicated that the interface area transferred stress through slip bands and through-interface cracks. Compressive strength at the divider orientation reached 1443.06 MPa, which was 45.78% higher than that of the sheet obtained at 120 min. In this case, the interface area transferred stress through slip bands and along-interface cracks. For TiAl composite sheets with thinner composite layer, compressive strength was further improved to 1631.01 MPa and 1594.66 MPa at the arrester and divider orientations with sintering holding time of 40 min, respectively. The ductile metal layer exerted a significant toughening effect. Both interface regulation and laminated structure transformation could enhance the hetero-deformation induced (HDI) strengthening and improve the comprehensive mechanical properties of the composite sheets.  相似文献   
2.
This study presents an improved mathematical model to analyse the stress wave propagation in adhesively bonded functionally graded (FG) circular cylinders (butt joint) under an axial impulsive load. The volume fractions of the material constituents in the upper and lower cylinders were functionally tailored through the thickness of each cylinder using a power-law. The effective material properties of both cylinders, which are made of aluminum (Al) and silicon carbide (SiC), at any point were predicted by using the Mori–Tanaka homogenization scheme. In this improved model, the governing equations of the wave propagation include the spatial derivatives of local mechanical properties and were discretized by means of the finite difference method. The influence of these spatial derivatives and the compositional gradient exponent on the displacement and stress distributions of the joint was investigated. The material composition variations of both cylinders affected the displacement and stress fields whereas the compositional gradient exponent had a minor effect. The stress concentrations were alleviated in time, the displacement and stress distributions/variations around/along the upper and lower cylinder-adhesive interfaces were significantly affected by the adhesive layer. The spatial derivatives also affected the temporal histories of the displacement and stress components evaluated at the selected critical points of the upper cylinder, adhesive layer and lower cylinder. The consideration of the spatial local material derivatives provided a more accurate mathematical model of wave propagations through the graded layered structures.  相似文献   
3.
Large domain wall (DW) conductivity in an insulating ferroelectric plays an important role in the future nanosensors and nonvolatile memories. However, the wall current was usually too small to drive high-speed memory circuits and other agile nanodevices requiring high output-powers. Here, a large domain-wall current of 67.8 μA in a high on/off ratio of ~4460 was observed in an epitaxial Au/BiFeO3/SrRuO3 thin-film capacitor with the minimized oxygen vacancy concentration. The studies from read current-write voltage hysteresis loops and piezo-response force microscope images consistently showed remaining of partially unswitched domains after application of an opposite poling voltage that increased domain wall density and wall current greatly. A theoretical model was proposed to explain the large wall current. According to this model, the domain reversal occurs with the appearance of head-to-head and tail-to-tail 180° domain walls (DWs), resulting in the formation of highly conductive wall paths. As the applied voltage increased, the domain-wall number increased to enhance the on-state current, in agreement with the measurements of current-voltage curves. This work paves a way to modulate DW currents within epitaxial Au/BiFeO3/SrRuO3 thin-film capacitors through the optimization of both oxygen vacancy and domain wall densities to achieve large output powers of modern domain-wall nanodevices.  相似文献   
4.
5.
Very high resolution inverse synthetic aperture radar (ISAR) imaging of fast rotating targets is a complicated task. There may be insufficient pulses or may introduce migration through range cells (MTRC) during the coherent processing interval (CPI) when we use the conventional range Doppler (RD) ISAR technique. With compressed sensing (CS) technique, we can achieve the high-resolution ISAR imaging of a target with limited number of pulses. Sparse representation based method can achieve the super resolution ISAR imaging of a target with a short CPI, during which the target rotates only a small angle and the range migration of the scatterers is small. However, traditional CS-based ISAR imaging method generally faced with the problem of basis mismatch, which may degrade the ISAR image. To achieve the high resolution ISAR imaging of fast rotating targets, this paper proposed a pattern-coupled sparse Bayesian learning method for multiple measurement vectors, i.e. the PC-MSBL algorithm. A multi-channel pattern-coupled hierarchical Gaussian prior is proposed to model the pattern dependencies among neighboring range cells and correct the MTRC problem. The expectation-maximization (EM) algorithm is used to infer the maximum a posterior (MAP) estimate of the hyperparameters. Simulation results validate the effectiveness and superiority of the proposed algorithm.  相似文献   
6.
The phase shift characteristics reflect the state change of electromagnetic wave in plasma sheath and can be used to reveal deeply the action mechanism between electromagnetic wave and plasma sheath. In this paper, the phase shift characteristics of electromagnetic wave propagation in plasma were investigated. Firstly, the impact factors of phase shift including electron density,collision frequency and incident frequency were discussed. Then, the plasma with different electron density distribution profiles were employed to investigate the influence on the phase shift characteristics. In a real case, the plasma sheath around the hypersonic vehicle will affect and even break down the communication. Based on the hypersonic vehicle model, we studied the electromagnetic wave phase shift under different flight altitude, speed, and attack angle. The results indicate that the phase shift is inversely proportional to the flight altitude and positively proportional to the flight speed and attack angle. Our work provides a theoretical guidance for the further research of phase shift characteristics and parameters inversion in plasma.  相似文献   
7.
Corrosion and salt deposition problems severely restrict the industrialization of supercritical water oxidation. Transpiring wall reactor can effectively weaken these two problems by a protective water film. In this work, methanol was selected as organic matter, and the influences of vital structural parameters on water film properties and organic matter removal were studied via numerical simulation. The results indicate that higher than 99% of methanol conversion could be obtained and hardly affected by transpiration water layer, transpiring wall porosity and inner diameter. Increasing layer and porosity reduced reactor center temperature, but inner diameter's influence was lower relatively. Water film temperature reduced but coverage rate raised as layer, porosity, and inner diameter increased. Notably, the whole reactor was in supercritical state and coverage rate was only approximately 85% in the case of one layer. Increasing reactor length affected slightly the volume of the upper supercritical zone but enlarged the subcritical zone.  相似文献   
8.
This paper presents results of experimental investigations on spherical and cylindrical flame propagation in pre-mixed H2/air-mixtures in unconfined and semi-confined geometries. The experiments were performed in a facility consisting of two transparent solid walls with 1 m2 area and four weak side walls made from thin plastic film. The gap size between the solid walls was varied stepwise from thin layer geometry (6 mm) to cube geometry (1 m). A wide range of H2/air-mixtures with volumetric hydrogen concentrations from 10% to 45% H2 was ignited between the transparent solid walls. The propagating flame front and its structure was observed with a large scale high speed shadow system. Results of spherical and cylindrical flame propagation up to a radius of 0.5 m were analyzed. The presented spherical burning velocity model is used to discuss the self-acceleration phenomena in unconfined and unobstructed pre-mixed H2/air flames.  相似文献   
9.
A number of worms, named P2P (peer-to-peer) passive worms, have recently surfaced, which propagate in P2P file-sharing networks and have posed heavy threats to these networks. In contrast to the majority of Internet worms, it is by exploiting users’ legitimate activities instead of vulnerabilities of networks in which P2P passive worms propagate. This feature evidently slows down their propagation, which results in them not attracting an adequate amount of attention in literature. Meanwhile, this feature visibly increases the difficulty of detecting them, which makes it very possible for them to become epidemic. In this paper, we propose an analytical model for P2P passive worm propagation by adopting epidemiological approaches so as to identify their behaviors and predict the tendency of their propagation accurately. Compared with a few existing models, dynamic characteristics of P2P networks are taken into account. Based on this proposed model, the sufficient condition for the global stability of the worm free equilibrium is derived by applying epidemiological theories. Large scale simulation experiments have validated both the proposed model and the condition.  相似文献   
10.
Anisoplanatic electromagnetic (EM) propagation across a turbulent atmosphere has been recently examined for an unmodulated carrier propagating over an image-bearing transparency through optical lensing, and for the embedded information inside a carrier recovered using heterodyning and digital demodulation. Carrier modulation yielded better recovery than simple lens-based imaging. A possible mitigation strategy is proposed whereby the image information is encrypted on an RF chaotic carrier, thereafter secondarily embedded onto an optical carrier. Results based on the modified von Karman (MVKS) and the Hufnagel-Valley (H-V) models showed that the signal/image recovery under turbulence is improved compared with non-chaotic propagation. The case of time-varying/dynamic images is also taken up; it is demonstrated via cross-correlation products that turbulence is mitigated by the use of chaotic carrier encryption. Overall, transmission via chaos offers mitigation against distortions due to turbulence along with the security feature inherent via the chaos keys which prevent signal recovery without key-matching.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号