首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2365篇
  免费   332篇
  国内免费   164篇
电工技术   20篇
综合类   117篇
化学工业   707篇
金属工艺   104篇
机械仪表   31篇
建筑科学   8篇
矿业工程   10篇
能源动力   8篇
轻工业   40篇
水利工程   1篇
石油天然气   6篇
武器工业   4篇
无线电   525篇
一般工业技术   731篇
冶金工业   469篇
原子能技术   61篇
自动化技术   19篇
  2024年   4篇
  2023年   94篇
  2022年   73篇
  2021年   99篇
  2020年   120篇
  2019年   133篇
  2018年   102篇
  2017年   127篇
  2016年   112篇
  2015年   104篇
  2014年   169篇
  2013年   139篇
  2012年   175篇
  2011年   195篇
  2010年   125篇
  2009年   150篇
  2008年   119篇
  2007年   101篇
  2006年   111篇
  2005年   112篇
  2004年   110篇
  2003年   59篇
  2002年   49篇
  2001年   62篇
  2000年   54篇
  1999年   31篇
  1998年   18篇
  1997年   19篇
  1996年   19篇
  1995年   16篇
  1994年   15篇
  1993年   7篇
  1992年   6篇
  1991年   5篇
  1990年   5篇
  1989年   7篇
  1988年   1篇
  1983年   2篇
  1981年   2篇
  1980年   3篇
  1979年   1篇
  1978年   2篇
  1976年   1篇
  1975年   2篇
  1974年   1篇
排序方式: 共有2861条查询结果,搜索用时 328 毫秒
1.
Photoresponsive biomaterials are experiencing a transition from in vitro models to in vivo demonstrations that point toward clinical translation. Dynamic hydrogels for cell encapsulation, light-responsive carriers for controlled drug delivery, and nanomaterials containing photosensitizers for photodynamic therapy are relevant examples. Nonetheless, the step to the clinic largely depends on their combination with technologies to bring light into the body. This review highlights the challenge of photoactivation in vivo, and presents strategies for light management that can be adopted for this purpose. The authors’ focus is on technologies that are materials-driven, particularly upconversion nanoparticles that assist in “direct path” light delivery through tissue, and optical waveguides that “clear the path” between external light source and in vivo target. The authors’ intention is to assist the photoresponsive biomaterials community transition toward medical technologies by presenting light delivery concepts that can be integrated with the photoresponsive targets. The authors also aim to stimulate further innovation in materials-based light delivery platforms by highlighting needs and opportunities for in vivo photoactivation of biomaterials.  相似文献   
2.
Developing high-performance visible-to-UV photon upconversion systems based on triplet–triplet annihilation photon upconversion (TTA-UC) is highly desired, as it provides a potential approach for UV light-induced photosynthesis and photocatalysis. However, the quantum yield and spectral range of visible-to-UV TTA-UC based on nanocrystals (NCs) are still far from satisfactory. Here, three different sized CdS NCs are systematically investigated with triplet energy transfer to four mediators and four annihilators, thus substantially expanding the available materials for visible-to-UV TTA-UC. By improving the quality of CdS NCs, introducing the mediator via a direct mixing fashion, and matching the energy levels, a high TTA-UC quantum yield of 10.4% (out of a 50% maximum) is achieved in one case, which represents a record performance in TTA-UC based on NCs without doping. In another case, TTA-UC photons approaching 4 eV are observed, which is on par with the highest energies observed in optimized organic systems. Importantly, the in-depth investigation reveals that the direct mixing approach to introduce the mediator is a key factor that leads to close to unity efficiencies of triplet energy transfer, which ultimately governs the performance of NC-based TTA-UC systems. These findings provide guidelines for the design of high-performance TTA-UC systems toward solar energy harvesting.  相似文献   
3.
How to improve the sensitivity of the temperature-sensing luminescent materials is one of the most important objects currently. In this work, to obtain high sensitivity and learn the corresponding mechanism, the rare earth (RE) ions doped Y4.67Si3O13 (YS) phosphors were developed by solid-state reaction. The phase purity, structure, morphology and luminescence characteristics were evaluated by XRD, TEM, emission spectra, etc. The change of the optical bandgaps between the host and RE-doped phosphors was found, agreeing with the calculation results based on density-functional theory. The temperature-dependence of the upconversion (UC) luminescence revealed that a linear relationship exists between the fluorescence intensity ratio of Ho3+ and temperature. The theoretical resolution was evaluated. High absolute (0.083 K−1) and relative (3.53% K−1 at 293 K) sensitivities have been gained in the YS:1%Ho3+, 10%Yb3+. The effect of the Yb3+ doping concentration and pump power on the sensitivities was discussed. The pump-power–dependence of the UC luminescence indicated the main mechanism for high sensitivities in the YS:1%Ho3+, 10%Yb3+. Moreover, the decay-lifetime based temperature sensing was also evaluated. The above results imply that the present phosphors could be promising candidates for temperature sensors, and the proposed strategies are instructive in exploring other new temperature sensing luminescent materials.  相似文献   
4.
《Ceramics International》2022,48(2):1814-1819
Sr3Al2-xBxO5Cl2:Eu2+, Dy3+ (x = 0, 0.2, 0.4) long persistent phosphors were prepared via solid-state process. The pristine Sr3Al2O5Cl2:Eu2+, Dy3+ phosphor exhibits orange/red broad band emission around 609 nm, which can be attributed to the electric radiation transitions 4f65 d1→4f7 of Eu2+. Upon the same excitation, the B3+-doped Sr3Al2-xBxO5Cl2:Eu2+, Dy3+ phosphors display red-shift from 609 nm to 625 nm with increasing B3+ concentrations. The XRD patterns show that Al3+ can be replaced by B3+ in the host lattice at the tetrahedral site, which causes lattice contraction and crystal field enhancement, and thereafter achieves the red-shift on the emission spectrum. The XPS investigation provides direct evidence of the dominant 2-valent europium in the phosphor, which can be ascribed for the broad band emission of the prepared phosphors. The afterglow of all phosphors show standard double exponential decay behavior, and the afterglow of Sr3Al2O5Cl2:Eu2+, Dy3+is rather weak, while the sample co-doped with B3+shows longer and stronger afterglow, as confirmed after the curve simulation. The analysis of thermally stimulated luminescence showed that, when B3+ is introduced, a much deeper trap is created, and the density of the electron trap is also significantly increased. As a result, B3+ ions caused redshift and enhanced afterglow for the Sr3Al2-xBxO5Cl2:Eu2+, Dy3+ phosphor.  相似文献   
5.
0.5 at.% Cr:ZnGa2O4 precursor was synthesized by the co-precipitation method with nitrates as raw materials, using ammonium carbonate as the precipitant. Low-agglomerated Cr:ZnGa2O4 powders with an average particle size of 43 nm were obtained by calcining the precursor at 900℃ for 4 h. Using the powders as starting materials, 0.5 at.% Cr:ZnGa2O4 ceramics with an average grain size of about 515 nm were prepared by presintering at 1150℃ for 5 h in air and HIP post-treatment at 1100℃ for 3 h under 200 MPa Ar. The in-line transmittance of 0.5 at.% Cr:ZnGa2O4 ceramics with a thickness of 1.3 mm reaches 59.5% at the wavelength of 700 nm. The Cr:ZnGa2O4 ceramics can be effectively excited by visible light and produce persistent luminescence at 700 nm. For Cr:ZnGa2O4 transparent ceramics, the brightness of afterglow was larger than 0.32 mcd/m2 after 30 min, which is far superior to that of Cr:ZnGa2O4 persistent luminescence powders.  相似文献   
6.
The Nd-doped and Er-doped LuF3 single crystals were grown by the micro-pulling-down method to study their scintillation properties in the vacuum-ultraviolet (VUV) region. The doubly Nd–Er codoped single crystal was grown to study possibility of scintillation performance improvement by energy transfer from Er3+ to Nd3+ ions. The LiF flux was to avoid phase transition below melting temperature. The 1%Nd-doped sample showed the highest overall scintillation efficiency under X-ray excitation which was 7 times as high as that of the LaF3:Nd 8% standard. The leading Nd3+ 5d–4f emission was situated at 176 nm, while the Er3+ 5d–4f emission for Er-doped samples was observed at 163 nm, which better matches the sensitivity of some VUV-sensitive photodetectors. The optimum Er concentration was determined to be around 1–3 mol%. No Er3+ 5d–4f emission was observed for the doubly Er,Nd-codoped sample due to energy transfer from the Er3+ to Nd3+ ions. Slight improvement of the light yield was observed in the doubly-doped sample with respect to the Nd-only doped one.  相似文献   
7.
Cone-beam X-ray luminescence computed tomography (CB-XLCT) is an attractive hybrid imaging modality, and it has the potential of monitoring the metabolic processes of nanophosphors-based drugs in vivo. However, the XLCT imaging suffers from a severe ill-posed problem. In this work, a sparse nonconvex Lp (0?p?L1 regularization. Further, an iteratively reweighted split augmented lagrangian shrinkage algorithm (IRW_SALSA-Lp) was proposed to efficiently solve the non-convex Lp (0?p?p-values (1/16, 1/8, 1/4, 3/8, 1/2, 5/8, 3/4, 7/8) in both 3D digital mouse experiments and in vivo experiments. The results demonstrate that the proposed non-convex methods outperform L2 and L1 regularization in accurately recovering sparse targets in CB-XLCT. And among all the non-convex p-values, our Lp(1/4?p?相似文献   
8.
The photoluminescence properties of BiTaO4∶Pr3+ and BiTaO4 at room temperature were studied, and the infrared transmission and diffusion reflection spectra of BiTaO4 were measured. The photoluminescence spectrum of BiTaO4 peaks at about 420, 440 and 465 nm. There has an obvious excitation band from 330 to 370 nm. The photoluminescence spectrum of BiTaO4∶Pr3+ consists of the characteristic emission of Pr3+, and its main peak is at 606 nm from 3P0→3H6 transition of Pr3+. Its excitation spectrum consists of the wide band with maximum at 325 nm, the wide band in the range of 375~430 nm, and the characteristic excitation of Pr3+. The bands at 325 nm and 375~430 nm may be from the absorption of the charge transfer transition of the tantalate group and defect energy levels in its forbidden band, respectively. There is energy transfer from host to Pr3+. Because both the host density and photoluminescence peak intensity of BiTaO4∶Pr3+ are superior to PbWO4, BiTaO4∶Pr3+ may be a potential heavy scintillator.  相似文献   
9.
Colour Centres and Energy Transfer in BaF2-xClx:Eu2+ Phosphors   总被引:1,自引:1,他引:0  
The optical absorption spectra of BaF2-xClx:Eu2 after ultraviolet (UV) light excitation were investigated.The differences between the absorption spectra after and before excitation (DAS) were observed.The DAS increase at both the high and the low energy side of F band in BaF2-xClx:Eu2 after 245 nm UV light excitation.The bleach effect of UV light and the absorption of electrons in the valence band may account for the former and the formation of Fa centres (association of F(Cl-) centres), whose absorption band matches the HeNe laser better, may explain the latter.In the write-in process, the transfer of electrons is via tunneling.In the readout process, the transfer of electrons captured in F(F-) and Fa centres is more likely via tunneling, and that of F(Cl-) centres is more likely via conduction band.  相似文献   
10.
洪广言 《功能材料》1994,25(6):481-486
本文简要地介绍目前台湾功能材料产业与研究的情况,其中包括化合物半导体、电子构装材料、电子功能陶瓷材料、高温超导体、磁记录材料、稀土永磁材料、发光材料和传感器等。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号