首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   550篇
  免费   5篇
  国内免费   24篇
电工技术   20篇
综合类   25篇
化学工业   45篇
金属工艺   155篇
机械仪表   126篇
矿业工程   5篇
能源动力   9篇
轻工业   5篇
石油天然气   3篇
无线电   23篇
一般工业技术   149篇
原子能技术   9篇
自动化技术   5篇
  2024年   3篇
  2023年   8篇
  2022年   5篇
  2021年   12篇
  2020年   9篇
  2019年   22篇
  2018年   12篇
  2017年   7篇
  2016年   7篇
  2015年   17篇
  2014年   12篇
  2013年   39篇
  2012年   25篇
  2011年   46篇
  2010年   39篇
  2009年   39篇
  2008年   34篇
  2007年   27篇
  2006年   47篇
  2005年   39篇
  2004年   29篇
  2003年   22篇
  2002年   14篇
  2001年   18篇
  2000年   11篇
  1999年   8篇
  1998年   10篇
  1997年   5篇
  1996年   4篇
  1994年   4篇
  1993年   1篇
  1992年   4篇
排序方式: 共有579条查询结果,搜索用时 156 毫秒
1.
源气体流量比对F-DLC薄膜结构的影响   总被引:3,自引:1,他引:2  
以高纯石墨作靶,CHF3/Ar作源气体采用反应磁控溅射法制备出了氟化类金刚石(F-DLC)薄膜。拉曼光谱表明,CHF3相对流量的增加会引起薄膜的D峰与G峰强度之比I(D)/I(G)减小,晶粒增大,芳香环结构出例下降。红外吸收光谱分析证实了这些推论,指出这是由于薄膜中氟含量上升的结果。  相似文献   
2.
无氢类金刚石碳膜的研究进展   总被引:1,自引:0,他引:1  
介绍了无氢类金刚石碳膜的制备方法 ,它们的机械、光学、电学性能 ,将无氢与含氢的类金刚石碳膜进行了简单比较 ,总结及探讨了它们的应用  相似文献   
3.
Diamond-like carbon (DLC) films have proven quite advantageous in many tribological applications due to their low friction coefficient, their extreme hardness, and more recently their high adherence on different substrate materials. However, for many applications, DLC films as thick as 2 μm are required, which cause high residual stress. In order to overcome this problem, this study observed the behavior of different thicknesses of silicon interlayer between DLC films and Ti6Al4V substrates. The study also analyzed the relation of growth parameters to the mechanical properties of DLC films. Silicon and DLC films were grown by using a rf-PECVD at 13.56 MHz with silane and methane atmospheres, respectively. The contribution of an interlayer thickness to the adhesion between the DLC films and Ti6Al4V substrate was evaluated by using a micro-scratch technique. The hardness and friction coefficient were evaluated by using microindentation and lateral force microscopy (LFM), respectively. Raman scattering spectroscopy was used to characterize the film quality. A correlation was found between the intrinsic stress and adhesion of DLC film and the parameters of the silicon interlayer growth. The addition of a silicon interlayer successfully reduced intrinsic stress of the films, even as measured by using a perfilometry technique.  相似文献   
4.
真空阴极弧离子镀类金刚石碳(DLC)膜的碳弧稳定性研究   总被引:1,自引:0,他引:1  
选用氩气、氩气加氢气、氩气加乙炔等气体作为介质,石墨作为靶材进行真空阴极弧离子镀来制备类金刚石碳膜。石墨电弧有其独特的电弧特性曲线,不同气体介质对碳弧特性的影响不同,磁场的大小对电弧的稳定性有很大作用,碳弧下基片偏流随电弧电压的增加而减小,试验得到表面光滑的类金刚石碳(DLC)膜,对膜的表面进行了SEM分析。  相似文献   
5.
NITRIDE COATINGS have always been the popularchoice for increasing the wear lifetime for industrialcomponents.TiN is the most widely accepted butrecently CrN has been gaining more interest due itsthermal stability and good performance in corrosiveenvironments.Knowledge of the tribologicalperformance of CrN coatings in dry and lubricatedconditions is still quite limited[1,2].Many authorshave studied the properties of diamond like carbon(DLC)films and how they perform in dry conditions[…  相似文献   
6.
Nitrogen incorporated diamond like carbon films have been deposited by microwave surface wave plasma chemical vapor deposition (MW-SWP-CVD), using methane (CH4) as the source of carbon and with different nitrogen flow rates (N2 / CH4 flow ratios between 0 and 3). The influence of the nitrogen incorporation on the optical, structural properties and surface morphology of the carbon films were investigated using different spectroscopic techniques. The nitrogen has been incorporated into DLC:N films which was confirmed by the X-ray photoelectron spectroscopy (XPS) measurement. Moreover, the nitrogen incorporation was accompanied by a variation in the optical gap, which was attributed to the removal or creation of band tail states.  相似文献   
7.
The nitrogen doped diamond-like carbon (DLC) thin films were deposited on quartz and silicon substrates by a newly developed microwave surface-wave plasma chemical vapor deposition, aiming the application of the films for photovoltaic solar cells. For film deposition, we used argon as carrier gas, nitrogen as dopant and hydrocarbon source gases, such as camphor (C10H16O) dissolved with ethyl alcohol (C2H5OH), methane (CH4), ethylene (C2H4) and acetylene (C2H2). The optical and electrical properties of the films were studied using X-ray photoelectron spectroscopy, Nanopics 2100/NPX200 surface profiler, UV/VIS/NIR spectroscopy, atomic force microscope, electrical conductivity and solar simulator measurements. The optical band gap of the films has been lowered from 3.1 to 2.4 eV by nitrogen doping, and from 2.65 to 1.9 eV by experimenting with different hydrocarbon source gases. The nitrogen doped (flow rate: 5 sccm; atomic fraction: 5.16%) film shows semiconducting properties in dark (i.e. 8.1 × 10− 4 Ω− 1 cm− 1) and under the light illumination (i.e. 9.9 × 10− 4 Ω− 1 cm− 1). The surface morphology of the both undoped and nitrogen doped films are found to be very smooth (RMS roughness ≤ 0.5 nm). The preliminary investigation on photovoltaic properties of DLC (nitrogen doped)/p-Si structure show that open-circuit voltage of 223 mV and short-circuit current density of 8.3 × 10− 3 mA/cm2. The power conversion efficiency and fill factor of this structure were found to be 3.6 × 10− 4% and 17.9%, respectively. The use of DLC in photovoltaic solar cells is still in its infancy due to the complicated microstructure of carbon bondings, high defect density, low photoconductivity and difficulties in controlling conduction type. Our research work is in progress to realize cheap, reasonably high efficiency and environmental friendly DLC-based photovoltaic solar cells in the future.  相似文献   
8.
Magnesium alloys are of increasing interest to the automobile industry for their potential in reducing vehicle weight, and in turn, improving fuel economy and lowering emissions. It follows that improving the magnesium manufacturing processes will promote greater use of magnesium alloys in automobiles. In recent years, diamond-like carbon (DLC) coatings have attracted attention for their low coefficient of friction (COF) and wear rates. The implementation of DLC coatings on tool and die surfaces may help increase the efficiency of magnesium component manufacturing processes (such as cutting and sheet forming) and also improve the surface quality of the finished products.In this study, the dry sliding wear behaviour of magnetron sputtered non-hydrogenated DLC coatings against Mg (> 99.9 wt.%) was investigated using a vacuum pin-on-disc tribometer. Tests were performed in ambient air (28% RH) and in argon, under a constant load of 5 N and at a sliding speed of 0.12 m/s. In argon, the non-hydrogenated DLC coatings showed a very low COF of 0.05 after an initial running-in period. Carbonaceous material transfer from the non-hydrogenated DLC to the contact surface of the Mg pin was observed in argon. Changing the test atmosphere from argon to ambient air increased the COF to 0.40, which was accompanied by the formation of oxidized Mg debris and an increased wear rate. The friction and wear mechanisms of non-hydrogenated DLC coatings against Mg are proposed to rationalize experimental observations.  相似文献   
9.
Diamond-like carbon (DLC) coatings have found great applicability in the automotive industry because of their low friction coefficient and high wear resistance. Nevertheless, their tribological performance can be greatly reduced on soft substrates such as titanium alloys. The hard DLC coating cannot usually follow elastic and plastic deformation of the substrate without failing. In order to overcome this property mismatch between hard coating and soft substrate, triode plasma nitriding was applied as a pre-treatment to improve the mechanical properties of the Ti6Al4V alloy and further enhance the load support for the DLC coating. DLC and multilayered TiN/DLC, CrN/DLC CrAlN/DLC coatings were deposited onto “standard” and plasma nitrided Ti6Al4V substrates. Triode plasma nitriding increased the load-bearing capacity of the coating/substrate system, as higher critical adhesion loads were recorded for DLC coatings on plasma nitrided Ti6Al4V substrates. This treatment also reduced the wear rate of the DLC coating/substrate. Further load support and lower wear rates were achieved by using TiN, CrN and CrAlN as intermediate layers on plasma nitrided Ti6Al4V substrates.  相似文献   
10.
偏压类型对磁过滤等离子体制备优质类金刚石膜的影响   总被引:1,自引:1,他引:1  
采用自行研制的磁过滤等离子体装置在单晶Si基底上制备了优质类金刚石(DLC)薄膜.运用红外光谱(IR)、扫描电镜(SEM),原子力显微镜(AFM)和纳米压痕仪对样品进行了表征和分析,着重研究了衬底偏压类型对制备薄膜的影响.结果表明:在无偏压或周期性负偏压下制备的DLC薄膜的sp3含量比连续负偏压下制备的薄膜的sp3含量要高;同时在周期性偏压下制备的薄膜表面较光滑,其表面粗糙度仅为0.1 nm,sp3含量达到66.8%,相应的纳米硬度也较高(达到80GPa).同时对相应的成膜机理进行了讨论.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号