首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   30篇
  免费   10篇
化学工业   2篇
金属工艺   1篇
轻工业   1篇
无线电   15篇
一般工业技术   21篇
  2023年   1篇
  2021年   3篇
  2020年   1篇
  2019年   6篇
  2018年   3篇
  2017年   1篇
  2016年   2篇
  2015年   3篇
  2014年   3篇
  2013年   2篇
  2012年   3篇
  2011年   5篇
  2010年   3篇
  2009年   1篇
  2008年   2篇
  2007年   1篇
排序方式: 共有40条查询结果,搜索用时 15 毫秒
1.
The precise delivery of biofunctionalized matters is of great interest from the fundamental and applied viewpoints. In spite of significant progress achieved during the last decade, a parallel and automated isolation and manipulation of rare analyte, and their simultaneous on‐chip separation and trapping, still remain challenging. Here, a universal micromagnet junction for self‐navigating gates of microrobotic particles to deliver the biomolecules to specific sites using a remote magnetic field is described. In the proposed concept, the nonmagnetic gap between the lithographically defined donor and acceptor micromagnets creates a crucial energy barrier to restrict particle gating. It is shown that by carefully designing the geometry of the junctions, it becomes possible to deliver multiple protein‐functionalized carriers in high resolution, as well as MCF‐7 and THP‐1 cells from the mixture, with high fidelity and trap them in individual apartments. Integration of such junctions with magnetophoretic circuitry elements could lead to novel platforms without retrieving for the synchronous digital manipulation of particles/biomolecules in microfluidic multiplex arrays for next‐generation biochips.  相似文献   
2.
A high yielding aqueous phase exfoliation of graphite to high quality graphene using edible proteins and kitchen chemistry is reported here. Bovine serum albumin (BSA), β‐lactoglobulin, ovalbumin, lysozyme, and hemoglobin are used to exfoliate graphite and the exfoliation efficiency depended on the sign and magnitude of the protein charge. BSA showed maximum exfoliation rate, facilitated graphite exfoliation in water, at room temperature, by turbulence/shear force generated in a kitchen blender at exfoliation efficiencies exceeding 4 mg mL?1 h?1. Raman spectroscopy and transmission electron microscopy indicated 3–5 layer, defect‐free graphene of 0.5 μm size. Graphene dispersions loaded on a cellulose paper (650 μg cm?2) showed the film conductivity of 32 000 S m?1, which is much higher than graphene/polymer composites. Our method yielded ≈7 mg mL?1, BSA‐coated graphene with controllable surface charge, which is stable under wide ranges of pH (3.0–11) and temperature (5.0–50 °C), and in fetal bovine serum, for more than two months.These findings may lead to the large scale production of graphene for biological applications.  相似文献   
3.
A novel biofunctionalized three‐dimensional ordered nanoporous SiO2 film is designed for construction of chemiluminescent analytical devices. The nanoporous SiO2 film is prepared with self‐assembly of polystyrene spheres as a template and 5‐nm SiO2 nanoparticles on a glass slide followed by a calcination process. Its functionalization with streptavidin is achieved by using 3‐glycidoxypropyltrimethoxysilane as a linker. Based on the high‐selectivity recognition of streptavidin to biotin‐labeled antibody a novel immunosensor is further constructed for highly efficient chemiluminescent immunoassay. The surface morphologies and fabrication processes of both the biofunctionalized film and the immunosensor are characterized using scanning electron microscopy, atomic‐force microscopy, X‐ray photoelectron spectroscopy, and Fourier transform infrared spectroscopy. The three‐dimensional ordered nanopores have high capacity for loading of streptavidin and antibody and promote the mass transport of immunoreagents for immunoreaction, thus the resulting chemiluminescent immunosensor shows wide dynamic range for fast immunoassay, and good reproducibility and stability. Using carbohydrate antigen 125 (CA 125) as a model, the highly efficient chemiluminescent immunosensing shows a linear range of three orders of magnitude, from 0.5 to 400 U mL?1. This work provides a biofunctionalized porous nanostructure for promising biosensing applications.  相似文献   
4.
采用水热法制备了上转换发光纳米材料,并对其表面采用改良的St(o)ber法包覆二氧化硅,进一步采用硅烷化试剂进行氨基化修饰,最后通过戊二醛交联将亲和素成功偶联到纳米粒子表面,制备了亲和素生物功能化上转化发光纳米粒子.对制备的纳米粒子及其表面功能化处理过程进行了荧光光谱、TEM,XRD,FT- IR表征.结果表明,功能化...  相似文献   
5.
Hetero Diels‐Alder (HDA) cycloaddition – as an effective modular conjugation approach – is employed to graft thioamide endfunctional oligopeptides onto solid cyclopentadienyl (Cp) functional cellulose substrates generating cellulose‐peptide hybrid materials. The highly reactive Cp moieties serve as diene functionality in the consecutive HDA reaction on the biosubstrate surface. Oligopeptides (i.e., the model peptide Gly‐Gly‐Arg‐Phe‐Pro‐Trp‐Trp‐Gly and the antimicrobial peptide tritrpticin) are functionalized at their N‐termini employing strongly electron deficient thiocarbonyl thio compounds resulting in biomacromolecules bearing a thioamide endgroup. The dienophile‐ functional peptides readily undergo HDA reactions at ambient temperature and under mild conditions in solution with synthetic polymers as well as on solid (bio)substrates. An in‐depth investigation is provided of the influence of the temperature, the Lewis acid catalysis and the side group exchange of thioamide functional oligopeptides reacting with Cp terminated poly(methyl methacrylate) (Mn = 2100 g·mol?1, PDI = 1.1) in homogenous solution as well as Cp functionalized cellulose in a heterogeneous system. To assess the success of the grafting reaction, the soluble samples were subjected to characterization methods such as size exclusion chromatography (SEC) and SEC‐electrospray ionization mass spectrometry (SEC‐ESI‐MS). The heterogeneous “grafting‐to” reactions were monitored using high resolution attenuated total reflection (ATR) Fourier transform infrared microscopy (HR‐FTIRM) imaging, X‐ray photoelectron spectroscopy (XPS) and elemental analysis. Evaluation via elemental analysis leads to quantitative peptide cellulose surface loading capacities.  相似文献   
6.
Lead halide perovskite (LHP) is a promising material for various optoelectronic applications. Surface coating on particles is a common strategy to improve their functionality and environmental stability, but LHP is not amenable to most coating chemistries because of its intrinsic weakness against polar solvents. Here, a novel method of synthesizing LHP microlasers in a super-saturated polar solvent using sonochemistry and applying various functional coatings on individual microlasers in situ is described. Cesium lead bromine perovskite (CsPbBr3) microcrystals, capped with organic poly-norepinephrine (pNE) layers, are synthesized. The catechol group of pNE coordinates to bromine-deficient lead atoms, forming a defect-passivating and diffusion-blocking shell. The pNE layer enhances the material lifetime of CsPbBr3 in water by 2000-fold, enabling bright luminescence and lasing from single microcrystals in water. Furthermore, the pNE shell permits biofunctionalization with proteins, small molecules, and lipid bilayers. Luminescence from CsPbBr3 microcrystals is sustained in water over 1 h and observed in live cells. The functionalization method may enable new applications of LHP laser particles in water-rich environments.  相似文献   
7.
8.
For the 3D printing of bioscaffolds, the importance of a suitable bioink cannot be overemphasized. With excellent printability and biocompatibility, alginate (Alg) is one of the most used bioinks. However, its bioinert nature and insufficient mechanical stability, due to only crosslinking via cation interactions, hinder the practical application of Alg‐based bioinks in the individualized therapy of tissue defects. To overcome these drawbacks, for the first time, an ε‐polylysine (ε‐PL)‐modified Alg‐based bioink (Alg/ε‐PL) is produced. The introduction of ε‐PL improves the printability of the Alg‐based bioink due to increasing electrostatic interactions, which enhances the self‐supporting stability of the as‐printed scaffolds. The presence of the functional crosslinking –COOH and –NH2 groups in Alg and ε‐PL under mild conditions further enhances the mechanical stability of the scaffolds, far exceeding that of Alg/Ca2+ scaffolds. The surface charge of the prepared scaffolds is finely tuned by the feed ratio of Alg to ε‐PL and postimmobilization of different quantities of additional ε‐PL, with a view to enhancing cell adhesion and further biofunctionalization. The results indicate that chondroitin sulfate, an extracellular matrix component, and vascular endothelial growth factor can be successfully applied to biofunctionalize the scaffolds via electrostatic adsorption for enhanced biological activity.  相似文献   
9.
Abstract

Porous silicon (PSi) is widely used in biological experiments, owing to its biocompatibility and well-established fabrication methods that allow tailoring its surface. Nevertheless, there are some unresolved issues such as deciding whether the stabilization of PSi is necessary for its biological applications and evaluating the effects of PSi stabilization on the surface biofunctionalization with proteins. In this work we demonstrate that non-stabilized PSi is prone to detachment owing to the stress induced upon biomolecular adsorption. Biofunctionalized non-stabilized PSi loses the interference properties characteristic of a thin film, and groove-like structures resulting from a final layer collapse were observed by scanning electron microscopy. Likewise, direct PSi derivatization with 3-aminopropyl-triethoxysilane (APTS) does not stabilize PSi against immunoglobulin biofunctionalization. To overcome this problem, we developed a simple chemical process of stabilizing PSi (CoxPSi) for biological applications, which has several advantages over thermal stabilization (ToxPSi). The process consists of chemical oxidation in H2O2, surface derivatization with APTS and a curing step at 120 °C. This process offers integral homogeneous PSi morphology, hydrophilic surface termination (contact angle θ = 26°) and highly efficient derivatized and biofunctionalized PSi surfaces (six times more efficient than ToxPSi). All these features are highly desirable for biological applications, such as biosensing, where our results can be used for the design and optimization of the biomolecular immobilization cascade on PSi surfaces.  相似文献   
10.
A new flow‐through method for rapid capture and detection of microorganisms is developed using optically‐flat microengineered membranes. Selective and efficient capture of Salmonella is demonstrated with antibodies coated on membranes (microsieves) having a pore size much larger than the microorganism itself. The silicon‐nitride membranes are first photochemically coated with 1,2‐epoxy‐9‐decene yielding stable Si–C and N–C linkages. The resultant epoxide‐terminated microsieves are subsequently biofunctionalized with anti‐Salmonella antibodies. The capture efficiency of antibody‐coated microsieves with different pore sizes (2.0–5.0 μm) is studied with Salmonella enterica enterica serotype Typhimurium suspensions (107 cfu mL–1). The antibody‐coated microsieves capture 52% (2 μm microsieves), 30% (3.5 μm microsieves), and 12% (5 μm microsieves) of Salmonella from the suspension. The influence of flow rate (0.8–16 μL min–1 mm–2) on the capture efficiency of antibody‐coated 3.5 μm microsieves is investigated. The capture efficiency increases from ≈30% to ≈70% when the flow‐rate decreases from 16 to 0.8 μL min–1 mm–2. Antibody‐coated 3.5 μm microsieves can capture Salmonella rapidly and directly from fresh milk suspension (capture 35% at concentration of 80 cfu mL–1). The use of antibody‐coated microsieves as microbial selective capture devices is thus shown to be highly promising for the direct capture of microorganisms.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号