首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1434篇
  免费   524篇
  国内免费   56篇
电工技术   9篇
综合类   35篇
化学工业   402篇
金属工艺   12篇
机械仪表   6篇
建筑科学   22篇
矿业工程   4篇
能源动力   170篇
轻工业   53篇
水利工程   2篇
石油天然气   20篇
武器工业   7篇
无线电   429篇
一般工业技术   698篇
冶金工业   30篇
原子能技术   6篇
自动化技术   109篇
  2024年   18篇
  2023年   305篇
  2022年   152篇
  2021年   178篇
  2020年   193篇
  2019年   174篇
  2018年   170篇
  2017年   147篇
  2016年   116篇
  2015年   82篇
  2014年   77篇
  2013年   66篇
  2012年   55篇
  2011年   48篇
  2010年   28篇
  2009年   32篇
  2008年   26篇
  2007年   24篇
  2006年   19篇
  2005年   19篇
  2004年   11篇
  2003年   9篇
  2002年   10篇
  2001年   6篇
  2000年   7篇
  1999年   5篇
  1998年   5篇
  1997年   3篇
  1996年   2篇
  1995年   4篇
  1994年   2篇
  1993年   5篇
  1992年   3篇
  1991年   3篇
  1989年   2篇
  1985年   1篇
  1981年   1篇
  1951年   6篇
排序方式: 共有2014条查询结果,搜索用时 31 毫秒
1.
Transition metals sulfide-based nanomaterials have recently received significant attention as a promising cathode electrode for the oxygen evolution reaction (OER) due to their easily tunable electronic, chemical, and physical properties. However, the poor electrical conductivity of metal-sulfide materials impedes their practical application in energy devices. Herein, firstly nano-sized crystals of cobalt-based zeolitic-imidazolate framework (Co-ZIF) arrays were fabricated on nickel-form (NF) as the sacrificial template by a facile solution method to enhance the electrical conductivity of the electrocatalyst. Then, the Co3S4/NiS@NF heterostructured arrays were synthesized by a simple hydrothermal route. The Co-ZIFs derived Co3S4 nanosheets are grown successfully on NiS nanorods during the hydrothermal sulfurization process. The bimetallic sulfide-based Co3S4/NiS@NF-12 electrocatalyst demonstrated a very low overpotential of 119 mV at 10 mA cm?2 for OER, which is much lower than that of mono-metal sulfide NiS@NF (201 mV) and ruthenium-oxide (RuO2) on NF (440 mV) electrocatalysts. Furthermore, the Co3S4/NiS@NF-12 electrocatalyst showed high stability during cyclic voltammetry and chronoamperometry measurements. This research work offers an effective strategy for fabricating high-performance non-precious OER electrocatalysts.  相似文献   
2.
Novel Ln-MOF with microrods shape were successfully combined with ZnIn2S4 (ZIS) microsphere and used for photocatalytic hydrogen generation under UV–Vis and visible light. The Ln-MOFs/ZIS system comprises lanthanide-carboxylate coordination networks (Tm and Gd as metal ions, and 1,3,5-benzenetricarboxylic acid (BTC) as the organic linker) deposited on ZnIn2S4 microspheres. Effect of the amount of ((Tm,Gd)-BTC) (1, 5, 10 wt%) on the optical properties and photocatalytic hydrogen evolution performance was investigated. ZIS microsphere shows the marigold flower-like morphology and hexagonal polytopic crystal form. Our results proved that the combination of ZIS microsphere, Ln-MOF and Pt nanoparticles (NPs) caused significant enhancement in hydrogen generation. Amount of formed hydrogen was raised from 196.3 to 7782.1 μmol g?1 for pristine ZIS and ZIS decorated with 1% (Tm, Gd)-BTC/Pt under UV–Vis light, respectively.  相似文献   
3.
The development of efficient and stable electrocatalysts is of great significance for improving water splitting. Among them, transition metal oxyhydroxides show excellent performance in oxygen evolution reactions (OER), but there are certain difficulties in direct preparation. Recently, Metal–organic frameworks (MOFs) as precatalysts or precursors have shown promising catalytic performance in OER and can be decomposed under alkaline conditions. Therefore, using a mild and controllable way to convert MOFs into oxyhydroxides and retaining the original structural advantages is crucial for improving the catalytic activity. Herein, a rapid electrochemical strategy is used to activate well-mixed MOFs to prepare Co/Ni oxyhydroxide nanosheets for efficient OER catalysts, and the structural transformation in this process was investigated in detail by using scanning electron microscope, X-ray diffraction, Raman, X-ray photoelectron spectroscopy and electrochemical methods. It is discovered that electrochemical activation can promote ligand substitution of well-mixed MOFs to form porous oxyhydroxide nanosheets and tune the electronic structure of the metal (Co and Ni), which can lead to more active site exposure and accelerate charge transfer. In addition, the change of structure also improves hydrophilicity, as well as benefiting from the strong synergistic effect between multiple species, the optimal a-MCoNi–MOF/NF has excellent OER performance and long-term stability. More obviously, the porous CoNiOOH nanosheets are formed in situ during electrochemical activation process through structural transformation and acts as the active centers. This work provides new insights for mild synthesis of MOFs derivatives and also provides ideas for the preparation of highly efficient catalysts.  相似文献   
4.
针对芳香硝基化合物的催化选择性加氢反应,开发可替代贵金属催化剂的低成本、高效非贵金属催化剂,对于芳香胺类化合物的绿色生产具有重要意义。利用简易、可规模化的制备方法,以镍—2,5-吡啶二羧酸金属有机框架为前驱体,热解制备了氮掺杂石墨碳包覆镍纳米催化材料(Ni@CN)。采用X射线衍射、扫描电镜、透射电镜、元素分析、N2吸脱附等检测手段对Ni@CN的物化性质进行了表征,并对其催化性能进行了评价。结果表明,Ni@CN可在温和条件下(85℃,1.0 MPa H2)高效加氢含取代官能团的芳香硝基化合物生成对应的芳香胺类化合物。对比试验表明,镍纳米颗粒是Ni@CN的加氢活性中心,而石墨碳壳的存在有利于优先吸附硝基官能团。此外,进一步考察了Ni@CN的循环使用性能以及抗硫化物中毒的特性。  相似文献   
5.
Covalent organic frameworks (COFs) show advantageous characteristics, such as an ordered pore structure and a large surface area for gas storage and separation, energy storage, catalysis, and molecular separation. However, COFs usually exist as difficult-to-process powders, and preparing continuous, robust, flexible, foldable, and rollable COF membranes is still a challenge. Herein, such COF membranes with fiber morphology for the first time prepared via a newly introduced template-assisted framework process are reported. This method uses electrospun porous polymer membranes as a sacrificial large dimension template for making self-standing COF membranes. The porous COF fiber membranes, besides having high crystallinity, also show a large surface area (1153 m2 g−1), good mechanical stability, excellent thermal stability, and flexibility. This study opens up the possibility of preparation of large dimension COF membranes and their derivatives in a simple way and hence shows promise in technical applications in separation, catalysis, and energy in the future.  相似文献   
6.
Various products, including foods and pharmaceuticals, are sensitive to temperature fluctuations. Thus, temperature monitoring during production, transportation, and storage is critical. Facile indicators are required to monitor temperature conditions via color changes in real time. This study aimed to prepare and apply thiol-functionalized covalent organic frameworks (COFs) as a novel indicator for monitoring thermal history and temperature abuse. The COFs underwent obvious color changes from bright yellow to purple after exposure to different temperatures for varying durations. The reaction kinetics are analyzed under isothermal conditions, which reveal that the order of reaction rates is k−20°C < k4°C < k20°C < k35°C < k55°C. The activation energy (Ea) of the COFs is calculated using the Arrhenius equation as 50.71 kJ moL−1. The COFs are capable of sensitive color changes and offer a broad temperature tracking range, thereby demonstrating their application potential for the monitoring of temperature and time exposure history during production, transportation, and storage. This excellent performance thermal history indicator also shows promise for expanding the application field of COFs.  相似文献   
7.
In the present study, we report an eco-friendly and simple route to design and synthesize novel nanocomposite catalyst based on platinum nanoparticles anchored on binary support of graphitic carbon nitride (g-C3N4) and cobalt-metal-organic framework (ZIF-67). For this purpose, ZIF-67 was prepared by precipitation method and g-C3N4 was prepared through thermal polymerization method. Later, ZIF-67 and g-C3N4 were hybridized through sonication to get homogeneous g–C3N4–ZIF-67 nanocomposite support material. Platinum nanoparticles (PtNPs) were uniformly deposited on g–C3N4–ZIF-67 by an electrochemical method. The as-developed nanocatalyst was characterized by morphological, structural and electrochemical techniques. The electrocatalytic activity of PtNPs@g–C3N4–ZIF-67 nanocatalyst towards butanol oxidation was evaluated via CV, CA, LSV and EIS in an alkaline medium. Results revealed that the proposed catalyst showed greatly enhanced electrooxidation of butanol in terms of high magnificent current density, lower oxidation potential, excellent long-term stability, large surface area, low charge transfer resistance and less toxic ability. Enhanced catalytic performance of the proposed catalyst could be ascribed to the synergistic effect of g–C3N4–ZIF-67 nanocomposite and PtNPs. The PtNPs@g–C3N4–ZIF-67 catalyst holds promising potential applications to be used as an anodic electrocatalyst for the development of high-performance alkaline fuel cells.  相似文献   
8.
金属有机框架(Metal organic frameworks,MOFs)由于其显著的结构多样性和可调的发光性能,为制备不同种类的发光传感器提供了良好契机。近年来,利用发光MOFs探测温度传感技术受到了人们的广泛关注。结合对发光测温的描述后,总结了发光型MOF温度计的最新研究进展,重点介绍了双发射型MOF在温度传感领域中的广泛应用。  相似文献   
9.
10.
Herein, we propose a novel method to enhance the photoreactivity of an MOF catalyst by grafting isocyanate bonds ( NCO) and sulfhydryl-complexed copper ( SCu) onto ZIF-8 (NIF-SCu). The grafting process intercalated interlayer bands between the conduction and valence bands of ZIF-8, thereby providing a “ladder” for facile electron transition. The extreme improvement in the photoreactivity of NIF-SCu could be attributed to the enhancement in light responses in the range of 350–450 nm by  NCO groups and the widening of the visible light range of the MOF by  SCu groups. The formation of staggered energy levels in NIF-SCu could also narrow the band gap, lower the resistance, and facilitate the transfer of photogenerated carriers, thereby generating electrons with strong reduction potential in the  SCu conduction band. This study provides a new strategy for improving or even endowing the photoactivity of environmental functional materials with wide bandgaps.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号