首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17524篇
  免费   1646篇
  国内免费   711篇
电工技术   670篇
技术理论   1篇
综合类   1233篇
化学工业   3274篇
金属工艺   3931篇
机械仪表   654篇
建筑科学   665篇
矿业工程   1595篇
能源动力   350篇
轻工业   855篇
水利工程   111篇
石油天然气   310篇
武器工业   62篇
无线电   385篇
一般工业技术   1591篇
冶金工业   3830篇
原子能技术   123篇
自动化技术   241篇
  2024年   40篇
  2023年   173篇
  2022年   414篇
  2021年   532篇
  2020年   518篇
  2019年   435篇
  2018年   414篇
  2017年   489篇
  2016年   650篇
  2015年   613篇
  2014年   999篇
  2013年   1077篇
  2012年   1210篇
  2011年   1279篇
  2010年   937篇
  2009年   834篇
  2008年   713篇
  2007年   1049篇
  2006年   1034篇
  2005年   887篇
  2004年   791篇
  2003年   700篇
  2002年   659篇
  2001年   567篇
  2000年   475篇
  1999年   383篇
  1998年   342篇
  1997年   289篇
  1996年   266篇
  1995年   237篇
  1994年   189篇
  1993年   124篇
  1992年   133篇
  1991年   78篇
  1990年   82篇
  1989年   73篇
  1988年   56篇
  1987年   24篇
  1986年   22篇
  1985年   21篇
  1984年   17篇
  1983年   5篇
  1982年   17篇
  1981年   11篇
  1980年   6篇
  1978年   3篇
  1977年   3篇
  1976年   2篇
  1974年   3篇
  1951年   2篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
Development of efficient, low cost and multifunctional electrocatalysts for water splitting to harvest hydrogen fuels is a challenging task, but the combination of carbon materials with transition metal-based compounds is providing a unique and attractive strategy. Herein, composite systems based on cobalt ferrite oxide-reduced graphene oxide (Co2FeO4) @(rGO) using simultaneous hydrothermal and chemical reduction methods have been prepared. The proposed study eliminates one step associated with the conversion of GO into rGO as it uses direct GO during the synthesis of cobalt ferrite oxide, consequently rGO based hybrid system is achieved in-situ significantly, the optimized Co2FeO4@rGO composite has revealed an outstanding multifunctional applications related to both oxygen evolution reaction (OER) and hydrogen counterpart (HER). Various metal oxidation states and oxygen vacancies at the surface of Co2FeO4@rGO composites guided the multifunctional surface properties. The optimized Co2FeO4@rGO composite presents excellent multifunctional properties with onset potential of 0.60 V for ORR, an overpotential of 240 mV at a 20 mAcm?2 for OER and 320 mV at a 10 mAcm?2 for HER respectively. Results revealed that these multifunctional properties of the optimized Co2FeO4@ rGO composite are associated with high electrical conductivity, high density of active sites, crystal defects, oxygen vacancies, and favorable electronic structure arisinng from the substitution of Fe for Co atoms in binary spinel oxide phase. These surface features synergistically uplifted the electrocatalytic properties of Co2FeO4@rGO composites. The multifunctional properties of the Co2FeO4@ rGO composite could be of high interest for its use in a wide range of applications in sustainable and renewable energy fields.  相似文献   
2.
The recent introduction of the Asian yellow-legged hornet, Vespa velutina, into Europe has raised concern regarding the threat to honeybees and the competition with the European hornet, Vespa crabro. The aim of this study was to investigated essential (Mg, Fe, Zn, Cu) and non-essential (Cd and Pb) elements in these two species. Element concentrations were determined in the whole body and separately in the head, thorax and abdomen using atomic absorption spectrometry (AAS). The changes in essential element concentration and speciation during metamorphosis were also studied using size exclusion chromatography followed by AAS and proteomic analysis. In both species, the essential elements were more concentrated in the abdomen due to the presence of fat bodies. Magnesium, Fe and Zn concentrations were significantly higher in V. crabro than in V. velutina and could have been related to the higher aerobic energy demand of the former species required to sustain foraging flight. Low concentrations of Cd and Pb were indicative of low environmental exposure. The concentration and speciation of essential elements, particularly Fe, varied among the developmental stages, indicating a modification of ligand preferences during metamorphosis. Overall, the results in the present study provide a better understanding of the hornet metal metabolism and a foundation for additional studies.  相似文献   
3.
铸造车间生产的N330飞轮在加工Ф1025处M20螺栓孔时会出现一处或多处缩松缺陷,造成了该品种废品率的增加,为解决此缩松问题对飞轮进行了跟踪研究,分析并改进了飞轮的造型、冒口补缩和浇注工艺,通过试制验证了工艺改进的合理性。  相似文献   
4.
Ferroptosis is gaining followers as mechanism of selective killing cancer cells in a non-apoptotic manner, and novel nanosystems capable of inducing this iron-dependent death are being increasingly developed. Among them, polydopamine nanoparticles (PDA NPs) are arousing interest, since they have great capability of chelating iron. In this work, PDA NPs were loaded with Fe3+ at different pH values to assess the importance that the pH may have in determining their therapeutic activity and selectivity. In addition, doxorubicin was also loaded to the nanoparticles to achieve a synergist effect. The in vitro assays that were performed with the BT474 and HS5 cell lines showed that, when Fe3+ was adsorbed in PDA NPs at pH values close to which Fe(OH)3 begins to be formed, these nanoparticles had greater antitumor activity and selectivity despite having chelated a smaller amount of Fe3+. Otherwise, it was demonstrated that Fe3+ could be released in the late endo/lysosomes thanks to their acidic pH and their Ca2+ content, and that when Fe3+ was co-transported with doxorubicin, the therapeutic activity of PDA NPs was enhanced. Thus, reported PDA NPs loaded with both Fe3+ and doxorubicin may constitute a good approach to target breast tumors.  相似文献   
5.
介绍了硫磷混合酸溶样重铬酸钾容量法测定矿石中铁含量的方法和步骤。重点讨论了一线生产中的质量控制。  相似文献   
6.
Increasing use of iron oxide nanoparticles in medicine and environmental remediation has led to concerns regarding exposure of these nanoparticles to the public. However, limited studies are available to evaluate their effects on the environment, in particular on plants and food crops. Here, we investigated the effects of positive (PC) and negative (NC) charged iron oxide (Fe2O3) nanoparticles (IONPs) on the physiology and reproductive capacity of Arabidopsis thaliana at concentrations of 3 and 25 mg/L. The 3 mg/L treated plants did not show evident effects on seeding and root length. However, the 25 mg/L treatment resulted in reduced seedling (positive-20% and negative-3.6%) and root (positive-48% and negative-negligible) length. Interestingly, treatment with polyethylenimine (PEI; IONP-PC coating) also resulted in reduced root length (39%) but no change was observed with polyacrylic acid (PAA; IONP-NC coating) treatment alone. However, treatment with IONPs at 3 mg/L did lead to an almost 5% increase in aborted pollen, a 2%–6% reduction in pollen viability and up to an 11% reduction in seed yield depending on the number of treatments. Interestingly, the treated plants did not show any observable phenotypic changes in overall size or general plant structure, indicating that environmental nanoparticle contamination could go dangerously unnoticed.  相似文献   
7.
In recent years, there has been an increased interest in the design and use of iron oxide materials with nanoscale dimensions for magnetic, catalytic, biomedical, and electronic applications. The increased manufacture and use of iron oxide nanoparticles (IONPs) in consumer products as well as industrial processes is expected to lead to the unintentional release of IONPs into the environment. The impact of IONPs on the environment and on biological species is not well understood but remains a concern due to the increased chemical reactivity of nanoparticles relative to their bulk counterparts. This review article describes the impact of IONPs on cellular genetic components. The mutagenic impact of IONPs may damage an organism’s ability to develop or reproduce. To date, there has been experimental evidence of IONPs having mutagenic interactions on human cell lines including lymphoblastoids, fibroblasts, microvascular endothelial cells, bone marrow cells, lung epithelial cells, alveolar type II like epithelial cells, bronchial fibroblasts, skin epithelial cells, hepatocytes, cerebral endothelial cells, fibrosarcoma cells, breast carcinoma cells, lung carcinoma cells, and cervix carcinoma cells. Other cell lines including the Chinese hamster ovary cells, mouse fibroblast cells, murine fibroblast cells, Mytilus galloprovincialis sperm cells, mice lung cells, murine alveolar macrophages, mice hepatic and renal tissue cells, and vero cells have also shown mutagenic effects upon exposure to IONPs. We further show the influence of IONPs on microorganisms in the presence and absence of dissolved organic carbon. The results shed light on the transformations IONPs undergo in the environment and the nature of the potential mutagenic impact on biological cells.  相似文献   
8.
Hierarchical composites represent a class of efficient electrocatalysts for renewable energy storage and conversion technologies owing to the porous structure and additional exposure of metal sites. Herein, a Ni-based metal organic frameworks (MOFs) (marked as Ni-BDC, BDC stands for 1,4-benzenedicarboxylic acid) nanosheet is successfully fabricated on hydroxyl iron oxide (FeOOH) array with carbon fiber cloth (CFC) as substrate. Benefit from the coordination tuning synergistic effect of the distinct chemical composition and the hierarchical structure for fast mass transportation, the as-obtained FeOOH@Ni-BDC illustrates excellent catalytic ability for electrochemical water oxidation with low overpotential of 270 mV to reach 10 mA/cm2 current and good durability in alkaline electrolyte. The novelty of this work lies in the modulation of electronic structure of the FeOOH with Ni-BDC through coordination effect to enhance the activity of the hierarchical composite electrocatalyst. This work is expected to guide the preparation of efficient electrocatalyst for new type alternative energy sources exploitation in near future.  相似文献   
9.
10.
李蒙 《中国冶金》2019,29(4):47-53
为了提升大断面球墨铸铁综合力学性能,通过复合添加微量合金元素铜、锑、锡、钼对大断面球墨铸铁进行微合金化处理,借助金相显微镜(OM)、扫描电子显微镜(SEM)及力学性能测试等手段,研究了Cu Sb Sn Mo复合微合金化大断面球墨铸铁微观组织和力学性能。结果表明,试验球墨铸铁具有良好的综合力学性能。大断面球墨铸铁中添加铜、锑、锡、钼后优化了材料的组织结构,基体组织为珠光体+少量牛眼状铁素体;试样石墨组织细小、圆整,分布均匀。同时,合金元素的复合加入使得其抗拉强度达到800 MPa以上,硬度约为280HB,伸长率达到5%以上。拉伸断口分析表明,微合金化大断面球墨铸铁断裂模式以解理断裂为主,伴有少量的塑性变形。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号