首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5305篇
  免费   850篇
  国内免费   292篇
电工技术   124篇
综合类   262篇
化学工业   2158篇
金属工艺   458篇
机械仪表   75篇
建筑科学   121篇
矿业工程   50篇
能源动力   200篇
轻工业   78篇
水利工程   13篇
石油天然气   50篇
武器工业   17篇
无线电   888篇
一般工业技术   1582篇
冶金工业   133篇
原子能技术   22篇
自动化技术   216篇
  2024年   15篇
  2023年   110篇
  2022年   108篇
  2021年   242篇
  2020年   203篇
  2019年   180篇
  2018年   202篇
  2017年   262篇
  2016年   277篇
  2015年   328篇
  2014年   387篇
  2013年   311篇
  2012年   351篇
  2011年   440篇
  2010年   267篇
  2009年   355篇
  2008年   312篇
  2007年   292篇
  2006年   302篇
  2005年   228篇
  2004年   239篇
  2003年   215篇
  2002年   142篇
  2001年   107篇
  2000年   108篇
  1999年   88篇
  1998年   66篇
  1997年   50篇
  1996年   50篇
  1995年   39篇
  1994年   25篇
  1993年   17篇
  1992年   19篇
  1991年   24篇
  1990年   20篇
  1989年   14篇
  1988年   6篇
  1987年   3篇
  1986年   6篇
  1985年   4篇
  1984年   12篇
  1983年   4篇
  1982年   4篇
  1981年   5篇
  1980年   3篇
  1979年   1篇
  1975年   4篇
排序方式: 共有6447条查询结果,搜索用时 281 毫秒
1.
2.
This study presents the development and characterization of PVDF-conjugated polymer nanofiber-based systems. Five different conducting polymers (CPs) were synthesized successfully and used to create the nanofiber systems. The CPs used are polyaniline (PANI), polypyrrole (PPY), polyindole (PIN), polyanthranilic acid (PANA), and polycarbazole (PCZ). Nanofiber systems were produced utilizing the Forcespinning® technique. The nanofiber systems were developed by mechanical stretching. No electrical field or post-process poling was used in the nanofiber systems. The morphology, structure, electrochemical and piezoelectric performance was characterized. All of the nanofiber PVDF/CP systems displayed higher piezoelectric performance than the fine fiber PVDF systems. The PVDF/PPY nanofiber system displays the highest piezoelectric performance of 15.56 V. The piezoelectric performance of the PVDF/CP nanofiber systems favors potential for an attractive source of energy where highly flexible membranes could be used in power actuators, sensors and portable, and wireless devices to mention some.  相似文献   
3.
4.
Poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) films are attracting famous applications in antistatic coating, energy storage and conversion, printed electronics, and biomedical fields due to their conductivity, optical transparency and flexibility. However, PEDOT:PSS has poor dispersion stability during long-term storage and transport. Moreover, the dried PEDOT:PSS films are insoluble in any solvent and cannot be redispersed again. In comparison to bake drying, here, a feasible strategy to achieve mechanically redispersed PEDOT:PSS with the help of freeze-drying process was reported. The redispersed PEDOT:PSS can recover not only the initial characters such as pH, chemical composition, viscosity, and particle size under similar solid contents, but also conductivity and surface morphology of treated films. In addition, the treated film exhibits self-healing properties similar to pristine film in terms of mechanical and electrical properties. This technology enables reuse and overcomes the technical problems of PEDOT:PSS dispersion, realizing real-time processing to meet variable applications.  相似文献   
5.
《Ceramics International》2021,47(22):31470-31475
In this study, the impact of cobalt oxide (CoO) on the structure, stability, linear and nonlinear optical parameters of B2O3–Na2O–ZnO glasses was scrutinized. A series of glass system (ZnCoNaB-glasses) was successfully prepared through the melt quenching approach. Optical absorbance, reflectance, transmittance and FTIR spectroscopy were performed for all ZnCoNaB-glasses. The FTIR results showed that the BO4 units are enhanced while nonbridging oxygens are decreased with further CoO addition. Furthermore, ZnO exists as four-coordinated [ZnO4] units and these units decreased with further doping of CoO. These structural variations produce a decreasing impact in Urbach energy and nonlinear refractive index, meanwhile enhance the glass stability. Further, the metallization criterion (M) values indicate that our glass samples can be used for a new generation of nonlinear optical glasses. The preceding results can predict that the investigated ZnCoNaB-glasses will be utilized in versatile applications; especially optical switching and computing.  相似文献   
6.
Ce:Y3Al5O12 transparent ceramics (TCs) with appropriate emission light proportion and high thermal stability are significant to construct white light emitting diode devices with excellent chromaticity parameters. In this work, strategies of controlling crystal-field splitting around Ce3+ ion and doping orange-red emitting ion, were adopted to fabricate Ce:(Y,Tb)3(Al,Mn)5O12 TCs via vacuum sintering technique. Notably, 85.4 % of the room-temperature luminescence intensity of the TC was retained at 150 °C, and the color rendering index was as high as 79.8. Furthermore, a 12 nm red shift and a 16.2 % increase of full width at half maximum were achieved owing to the synergistic effects of Tb3+ and Mn2+ ions. By combining TCs with a 460 nm blue chip, a warm white light with a low correlated color temperature of 4155 K was acquired. Meanwhile, the action mechanism of Tb3+ ion and the energy transfer between Ce3+ and Mn2+ ions were verified in prepared TCs.  相似文献   
7.
A series of methacrylate-acrylonitrile-butadiene-styrene (MABS) resins was prepared using bulk polymerization. The polarity of the continuous phase and the compatibility of two phases were changed by adjusting the methyl methacrylate (MMA) content, choosing values that were close to styrene-butadiene rubber solubility value. The possibility of controlling the microstructure of the MABS resin by changing the polarity of the components and the compatibility of two phases was assessed. The dynamic mechanical analysis shows that the compatibility of two phases varies with the MMA content. The morphological analysis shows that increasing MMA contents results in a gradual decrease in the sub-inclusion structure with a network skeleton of rubber particles, and that all the particles become solid rubber when the MMA content reaches 75%. The sub-inclusion structure reappears but does not have a network skeleton when the MMA content is 90%. The impact strength and morphological analysis indicate that the solid rubber particles and the sub-inclusion structure with a network skeleton provide excellent toughness, while the sub-inclusion structure without a network skeleton does not. In contrast, the transmittance of the ABS resin first increased and then decreased with increasing MMA content.  相似文献   
8.
A study using three different pairs of electrochromic polymers (ECPs) synthesized onto plaques by means of a modified vapor phase polymerization (VPP) technique is presented. Restriction of the respective polymerization times, allowed both faster and slower polymerizing monomers to be controlled, and produced blended plaques with visually diffuse interfaces. The ECPs within the blended plaques retain their individual electrochromic behavior and when encapsulated into an electrochromic device, show outstanding optical switching performance with little degradation evident over 10,000 cycles, coupled with a switching time of the order of 1 second. Blends also allow multiple diffuse color changes within an electrochromic device, due to the difference in oxidation potentials of the individual ECPs, making them candidates for adaptive camouflage use. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42158.  相似文献   
9.
《Ceramics International》2015,41(8):9373-9382
The aim of this work was to study the bioactivity of systems based on a clinically tested bioactive glass (BG) particulates (mol%: 4.33 Na2O−30.30 CaO−12.99 MgO−45.45 SiO2−2.60 P2O5−4.33 CaF2) and organic carriers. The cohesiveness of injectable bone graft products is of high relevance when filling complex volumetric bone defects. With this motivation behind, BG particulates with mean sizes within 11−14 μm were mixed in different proportions with glycerol (G) and polyethylene glycol (PEG) as organic carriers and the mixtures were fully injectable exhibiting Newtonian flow behaviors. The apatite forming ability was investigated using X-ray diffraction and field emission scanning electron microscopy under secondary electron mode after immersion of samples in simulated body fluid (SBF) for time durations varying between 12 h and 7 days. The results obtained revealed that in spite of the good adhesion of glycerol and PEG carriers to glass particles during preparation stage, they did not hinder the exposure of bioactive glass particulates to the direct contact with SBF solution. The results confirmed the excellent bioactivity in vitro for all compositions expressed by high biomineralization rates with the formation of crystalline hydroxyapatite being identified by XRD after 12 h of immersion in SBF solution.  相似文献   
10.
The stretchable electrodes with excellent flexibility, electrical conductivity, and mechanical durability are the most fundamental components in the emerging and exciting field of flexible electronics. This article proposes a method for fabrication of such a stretchable electrode by embedding silver nanorods (AgNRs) into a polydimethylsiloxane (PDMS) matrix that is grown by a unique glancing angle deposition technique. The surface, mechanical, and electrical properties of PDMS are significantly changed after embedding the AgNRs in it. The results show that surface roughness and polarity increase after AgNRs are embedded in the PDMS matrix. Elastic modulus (E) and hardness (H) decrease with an increase in the indentation load as a result of the indentation depth effect. Due to strong interfacial adhesion of AgNRs embedded in the PDMS matrix, the E and H of nanocomposite are increased by 167.6 and 93.3% compared with PDMS film, respectively. Furthermore, the AgNRs-PDMS film has an electrical resistivity value in the order of 10−7 Ωm. It remains conductive during various mechanical strains such as bending, twisting, and stretching, which is demonstrated using a light-emitting diode circuit. Simultaneously, the antimicrobial activity of silver could make it a promising candidate for wearable electronics.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号