首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   120030篇
  免费   14005篇
  国内免费   8033篇
电工技术   9053篇
技术理论   3篇
综合类   12467篇
化学工业   14540篇
金属工艺   8827篇
机械仪表   12273篇
建筑科学   7791篇
矿业工程   6327篇
能源动力   7454篇
轻工业   2472篇
水利工程   4489篇
石油天然气   11564篇
武器工业   3808篇
无线电   8163篇
一般工业技术   11614篇
冶金工业   3315篇
原子能技术   1848篇
自动化技术   16060篇
  2024年   378篇
  2023年   1820篇
  2022年   3330篇
  2021年   4033篇
  2020年   4119篇
  2019年   3294篇
  2018年   3208篇
  2017年   4172篇
  2016年   5027篇
  2015年   5414篇
  2014年   7811篇
  2013年   7933篇
  2012年   9382篇
  2011年   10334篇
  2010年   7337篇
  2009年   7338篇
  2008年   6790篇
  2007年   8456篇
  2006年   7506篇
  2005年   6163篇
  2004年   5249篇
  2003年   4188篇
  2002年   3479篇
  2001年   2884篇
  2000年   2319篇
  1999年   1943篇
  1998年   1565篇
  1997年   1252篇
  1996年   1134篇
  1995年   912篇
  1994年   721篇
  1993年   489篇
  1992年   398篇
  1991年   334篇
  1990年   281篇
  1989年   252篇
  1988年   160篇
  1987年   88篇
  1986年   96篇
  1985年   59篇
  1984年   71篇
  1983年   58篇
  1982年   47篇
  1981年   31篇
  1980年   39篇
  1979年   38篇
  1978年   15篇
  1977年   11篇
  1959年   30篇
  1951年   37篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
《Ceramics International》2022,48(11):15207-15217
SCAPS solar cell simulation program was applied to model an inverted structure of perovskite solar cells using Cu-doped Ni1-xO thin films as hole transport layer. The Cu-doped Ni1-xO film were made by co-sputtering deposition under different deposition conditions. By increasing the amount of the Cu-dopant, the film crystallinity enhanced whereas the bandgap energy decreased. The transmittance of the thin films decreased significantly by increasing the sputtering power of copper. High quality, uniform, compact, and pin-hole free films with low surface roughness were achieved. The structural, chemical, surface morphology, optical, electrical, and electronic properties of the Cu doped Ni1-xO films were used as input parameters in the simulation of Pb-based (MAPbI3-xClx) and Pb-free (MAGeI3) perovskite solar cells. Simulation results showed that the performance of both Pb-based and Pb-free perovskite solar cell devices significantly enhanced with Cu-doped Ni1-xO film. The highest power conversion efficiency (PCE) for the Pb-free perovskite solar cell is 8.9% which is lower than the highest PCE of 17.5% for the Pb-based perovskite solar cell.  相似文献   
2.
Aiming at improving the relatively low energy output and energy conversion efficiency of the micro-thermal voltaic (MTPV) system, an innovative heat recirculating micro combustor with pin fins is designed. The effects of pin fins arrangement, hydrogen/air equivalent ratio on the energy output and performance of CHMC, HMCP and HMCI are compared and investigated. The result shows that when the Vin is 6 m/s and Φ is 1.0, the emitter power of CHMC is 72.76W, and that of HCMP and HCMI micro combustor are 75.99W and 76.35W. and the emitter efficiency of CHMC, HCMP and HCMI is 41.93%, 43.26% and 44.01%. HMCI has better energy output capability compared with CHMC and HMCP. Even though, HMCI brings a higher pressure drop, it is within the acceptable range. When the Vin is 6 m/s, the pressure drop from the pin fins only accounts for 26.4% of the total pressure drop for HMCI. Through the study of equivalent ratio, it is found that HMCI has good adaptability in different equivalent ratio range. This work provides new ideas for the development of MTPV system in the future.  相似文献   
3.
4.
A ring-on-ring (ROR) test is a prevailing test method for evaluating the equi-biaxial strength of glass materials. However, current ROR test standards limit the strength and size of glass to prevent a nonlinear behavior. In this study, the feasibility of ROR testing for non-standard, high-strength glass, such as tempered or ion-exchanged rectangular glass is investigated. To this end, ROR simulation based on theory and experiment is conducted for thirty non-standard glasses with widths of 100–300 mm and aspect ratios of 1.0–2.0. As a result, the maximum measurable stress was about 215.6 MPa for 100 × 200 mm glass and 481.3 MPa for 300 × 600 mm glass with a 3% deviation, which is well above the strength of regular tempered glass. The main purpose of this work is to understand the range of aspect ratio of horizontal and vertical widths of a glass plate that can be evaluated by the standard ROR test.  相似文献   
5.
6.
Increasing the heat capacity of heat exchangers is a crucial need for modern devices. The thermal conductivity of the usual fluids and the Nusselt (Nu) number of flows containing such fluids are two bottlenecks in the way of increasing heat delivery in the heat exchangers. For this reason, nanofluids have been introduced. The effect of utilizing a Cu-water nanofluid as a coolant of two hot pipes in a square cavity is investigated numerically with a two-component lattice Boltzmann method. The volume fraction of nanoparticles is assumed to be constant (0.03) while the Richardson (Ri) number varies from 0.02 to 20. Results show that the effectiveness of nanoparticles is better observed in the natural convection mode. However, sedimentation is also very probable at high Ri numbers, which significantly reduces the effectiveness of the nanoparticles. Configurations which produce a natural convection stream similar to the forced convection one as well as the configurations with high spacing and hence, low heat stream interactions, are the best choices for a uniform heat rate from the pipes.  相似文献   
7.
Relatively low efficiency is the biggest obstacle to the popularization of water electrolysis, which is a particularly feasible way to produce super-pure hydrogen. Imposing a magnetic field can increase the hydrogen production efficiency of water electrolysis. However, the enhancement's detailed mechanism still lacks an insightful understanding of the bubbles' micro vicinity. Our recent work aims to understand why the micro-magnetohydrodynamic (MHD) convection hinders single bubbles' detachment on the microelectrode. A water electrolysis experiment by microelectrode is performed under an electrode-normal magnetic field, and dynamic analysis of the single bubble growing on microelectrodes is performed. The variation of bubble diameter with time in the presence or absence of the magnetic field was measured, and the forces acting on the bubble were quantified. The result shows that the micro-MHD convection, induced by Lorentz force, can give rise to a downward hydrodynamic pressure force that will not appear in large-scale MHD convection. This force can be of the same magnitude as the surface tension, so it dramatically hinders bubbles' detachment. Besides, the Kelvin force provides a new potential way for further improving the efficiency of water electrolysis.  相似文献   
8.
The noninvasive sampling of dermal interstitial fluid (ISF) for the monitoring of clinical biomarkers is a greatly appealing area of research. The identification of molecular biomarkers in biological fluids has been accelerated with -omics analyses but remains limited in ISF because of its time-consuming and complex extraction process. Here, the generation of microneedle (MN) patches made of superabsorbent acrylate-based hydrogels for the rapid sampling of dermal ISF is described to explore its proteome. In depth, iterative optimization allows the identification of novel acrylate-based compositions with the required chemical, mechanical, and biocompatibility properties allowing proteomic analysis of the extracted ISF for the first time after sampling with swelling MNs. The generated MN arrays show no cytotoxic effect, successfully cross the stratum corneum, and can collect up to 6 µL of dermal ISF in 10 min in vivo. Proteomics lead to the detection of 176 clinically relevant biomarkers in the collected samples validating the use of ISF as a relevant bodily fluid for disease monitoring and diagnostic. Importantly, it is discovered that extraction fingerprint is strongly dependent on the MNs chemistry, and thus specific biomarkers could be selectively extracted by tuning the composition of the patch, making the system versatile and specific.  相似文献   
9.
Chameleonic properties, i. e., the capacity of a molecule to hide polarity in non-polar environments and expose it in water, help achieving sufficient permeability and solubility for drug molecules with high MW. We present models of experimental measures of polarity for a set of 24 FDA approved drugs (MW 405-1113) and one PROTAC (MW 1034). Conformational ensembles in aqueous and non-polar environments were generated using molecular dynamics. A linear regression model that predicts chromatographic apparent polarity (EPSA) with a mean unsigned error of 10 Å2 was derived based on separate terms for donor, acceptor, and total molecular SASA. A good correlation (R2=0.92) with an experimental measure of hydrogen bond donor potential, Δlog Poct-tol, was found for the mean hydrogen bond donor SASA of the conformational ensemble scaled with Abraham's A hydrogen bond acidity. Two quantitative measures of chameleonic behaviour, the chameleonic efficiency indices, are introduced. We envision that the methods presented herein will be useful to triage designed molecules and prioritize those with the best chance of achieving acceptable permeability and solubility.  相似文献   
10.
新型建筑工业化具有高质量、低消耗、可循环发展等特征,其推广已上升到国家战略层面。利用演化博弈方法,建立“政府-开发商-银行” 的三方动态演化博弈模型,进行各博弈主体策略的演化稳定性分析,并针对初始状态、奖惩力度、借贷风险和开发成本等对演化结果的影响进行动态仿真。在此基础上, 考虑开发商群体的网络拓扑特征对演化真实性的影响,引入复杂网络理论, 以无标度网络为载体描述开发商个体的连接偏好和决策机制,构建政府监管下的建筑工业化扩散模型,并通过仿真深入研究相关因素对扩散深度的影响作用,最后结合仿真结果给出相应对策建议。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号