首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   45505篇
  免费   5249篇
  国内免费   3724篇
电工技术   4865篇
技术理论   3篇
综合类   5062篇
化学工业   4791篇
金属工艺   1872篇
机械仪表   2620篇
建筑科学   4539篇
矿业工程   1570篇
能源动力   1471篇
轻工业   2415篇
水利工程   1319篇
石油天然气   3087篇
武器工业   388篇
无线电   5271篇
一般工业技术   4996篇
冶金工业   1806篇
原子能技术   881篇
自动化技术   7522篇
  2024年   145篇
  2023年   650篇
  2022年   1267篇
  2021年   1700篇
  2020年   1593篇
  2019年   1261篇
  2018年   1232篇
  2017年   1534篇
  2016年   1800篇
  2015年   1903篇
  2014年   2802篇
  2013年   2778篇
  2012年   3272篇
  2011年   3523篇
  2010年   2685篇
  2009年   2762篇
  2008年   2668篇
  2007年   3173篇
  2006年   2864篇
  2005年   2462篇
  2004年   2028篇
  2003年   1752篇
  2002年   1494篇
  2001年   1332篇
  2000年   1063篇
  1999年   819篇
  1998年   682篇
  1997年   568篇
  1996年   498篇
  1995年   429篇
  1994年   365篇
  1993年   245篇
  1992年   208篇
  1991年   159篇
  1990年   154篇
  1989年   130篇
  1988年   122篇
  1987年   63篇
  1986年   32篇
  1985年   34篇
  1984年   39篇
  1983年   15篇
  1982年   18篇
  1981年   18篇
  1980年   15篇
  1979年   9篇
  1964年   12篇
  1961年   10篇
  1960年   9篇
  1959年   10篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
2.
Prediction of mode I fracture toughness (KIC) of rock is of significant importance in rock engineering analyses. In this study, linear multiple regression (LMR) and gene expression programming (GEP) methods were used to provide a reliable relationship to determine mode I fracture toughness of rock. The presented model was developed based on 60 datasets taken from the previous literature. To predict fracture parameters, three mechanical parameters of rock mass including uniaxial compressive strength (UCS), Brazilian tensile strength (BTS), and elastic modulus (E) have been selected as the input parameters. A cluster of data was collected and divided into two random groups of training and testing datasets. Then, different statistical linear and artificial intelligence based nonlinear analyses were conducted on the training data to provide a reliable prediction model of KIC. These two predictive methods were then evaluated based on the testing data. To evaluate the efficiency of the proposed models for predicting the mode I fracture toughness of rock, various statistical indices including coefficient of determination (R2), root mean square error (RMSE), and mean absolute error (MAE) were utilized herein. In the case of testing datasets, the values of R2, RMSE, and MAE for the GEP model were 0.87, 0.188, and 0.156, respectively, while they were 0.74, 0.473, and 0.223, respectively, for the LMR model. The results indicated that the selected GEP model delivered superior performance with a higher R2 value and lower errors.  相似文献   
3.
The realization of liquid metal-based wearable systems will be a milestone toward high-performance, integrated electronic skin. However, despite the revolutionary progress achieved in many other components of electronic skin, liquid metal-based flexible sensors still suffer from poor sensitivity due to the insufficient resistance change of liquid metal to deformation. Herein, a nacre-inspired architecture composed of a biphasic pattern (liquid metal with Cr/Cu underlayer) as “bricks” and strain-sensitive Ag film as “mortar” is developed, which breaks the long-standing sensitivity bottleneck of liquid metal-based electronic skin. With 2 orders of magnitude of sensitivity amplification while maintaining wide (>85%) working range, for the first time, liquid metal-based strain sensors rival the state-of-art counterparts. This liquid metal composite features spatially regulated cracking behavior. On the one hand, hard Cr cells locally modulate the strain distribution, which avoids premature cut-through cracks and prolongs the defect propagation in the adjacent Ag film. On the other hand, the separated liquid metal cells prevent unfavorable continuous liquid-metal paths and create crack-free regions during strain. Demonstrated in diverse scenarios, the proposed design concept may spark more applications of ultrasensitive liquid metal-based electronic skins, and reveals a pathway for sensor development via crack engineering.  相似文献   
4.
This paper proposes a method for the coordinated control of power factor by means of a multiagent approach. The proposed multiagent system consists of two types of agent: single feeder agent (F_AG) and bus agent (B_AG). In the proposed system, an F_AG plays as an important role, which decides the power factors of all distributed generators by executing the load flow calculations repeatedly. The voltage control strategies are implemented as the class definition of Java into the system. In order to verify the performance of the proposed method, it has been applied to a typical distribution model system. The simulation results show that the system is able to control very violent fluctuation of the demands and the photovoltaic (PV) generations.  相似文献   
5.
The basic structural and functional unit of a living organism is a single cell. To understand the variability and to improve the biomedical requirement of a single cell, its analysis has become a key technique in biological and biomedical research. With a physical boundary of microchannels and microstructures, single cells are efficiently captured and analyzed, whereas electric forces sort and position single cells. Various microfluidic techniques have been exploited to manipulate single cells through hydrodynamic and electric forces. Digital microfluidics (DMF), the manipulation of individual droplets holding minute reagents and cells of interest by electric forces, has received more attention recently. Because of ease of fabrication, compactness and prospective automation, DMF has become a powerful approach for biological application. We review recent developments of various microfluidic chips for analysis of a single cell and for efficient genetic screening. In addition, perspectives to develop analysis of single cells based on DMF and emerging functionality with high throughput are discussed.  相似文献   
6.
Clinical narratives such as progress summaries, lab reports, surgical reports, and other narrative texts contain key biomarkers about a patient's health. Evidence-based preventive medicine needs accurate semantic and sentiment analysis to extract and classify medical features as the input to appropriate machine learning classifiers. However, the traditional approach of using single classifiers is limited by the need for dimensionality reduction techniques, statistical feature correlation, a faster learning rate, and the lack of consideration of the semantic relations among features. Hence, extracting semantic and sentiment-based features from clinical text and combining multiple classifiers to create an ensemble intelligent system overcomes many limitations and provides a more robust prediction outcome. The selection of an appropriate approach and its interparameter dependency becomes key for the success of the ensemble method. This paper proposes a hybrid knowledge and ensemble learning framework for prediction of venous thromboembolism (VTE) diagnosis consisting of the following components: a VTE ontology, semantic extraction and sentiment assessment of risk factor framework, and an ensemble classifier. Therefore, a component-based analysis approach was adopted for evaluation using a data set of 250 clinical narratives where knowledge and ensemble achieved the following results with and without semantic extraction and sentiment assessment of risk factor, respectively: a precision of 81.8% and 62.9%, a recall of 81.8% and 57.6%, an F measure of 81.8% and 53.8%, and a receiving operating characteristic of 80.1% and 58.5% in identifying cases of VTE.  相似文献   
7.
8.
The biorelevant PyFALGEA oligopeptide ligand, which is selective towards the epidermal growth factor receptor (EGFR), has been successfully employed as a substrate in magnetic resonance signal amplification by reversible exchange (SABRE) experiments. It is demonstrated that PyFALGEA and the iridium catalyst IMes form a PyFALGEA:IMes molecular complex. The interaction between PyFALGEA:IMes and H2 results in a ternary SABRE complex. Selective 1D EXSY experiments reveal that this complex is labile, which is an essential condition for successful hyperpolarization by SABRE. Polarization transfer from parahydrogen to PyFALGEA is observed leading to significant enhancement of the 1H NMR signals of PyFALGEA. Different iridium catalysts and peptides are inspected to discuss the influence of their molecular structures on the efficiency of hyperpolarization. It is observed that PyFALGEA oligopeptide hyperpolarization is more efficient when an iridium catalyst with a sterically less demanding NHC ligand system such as IMesBn is employed. Experiments with shorter analogues of PyFALGEA, that is, PyLGEA and PyEA, show that the bulky phenylalanine from the PyFALGEA oligopeptide causes steric hindrance in the SABRE complex, which hampers hyperpolarization with IMes. Finally, a single-scan 1H NMR SABRE experiment of PyFALGEA with IMesBn revealed a unique pattern of NMR lines in the hydride region, which can be treated as a fingerprint of this important oligopeptide.  相似文献   
9.
在分析传统单片机教学存在问题的基础上,提出面向工程应用,聚焦企业需要,构建能力递进、面向应用的内容体系,搭建资源共享、实践创新、师生互动的自主学习平台,组建培养兴趣,突出技能的“双师型”教学团队,实践表明,在传授知识的同时,能有效提升学习兴趣,优化人才素质结构。  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号