首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   25095篇
  免费   988篇
  国内免费   776篇
电工技术   628篇
技术理论   17篇
综合类   1484篇
化学工业   3405篇
金属工艺   530篇
机械仪表   700篇
建筑科学   3745篇
矿业工程   834篇
能源动力   2723篇
轻工业   1405篇
水利工程   3679篇
石油天然气   2427篇
武器工业   40篇
无线电   530篇
一般工业技术   1358篇
冶金工业   1641篇
原子能技术   465篇
自动化技术   1248篇
  2024年   47篇
  2023年   318篇
  2022年   583篇
  2021年   620篇
  2020年   630篇
  2019年   698篇
  2018年   597篇
  2017年   627篇
  2016年   644篇
  2015年   732篇
  2014年   1175篇
  2013年   1477篇
  2012年   1303篇
  2011年   1888篇
  2010年   1513篇
  2009年   1627篇
  2008年   1365篇
  2007年   1518篇
  2006年   1412篇
  2005年   1340篇
  2004年   1082篇
  2003年   964篇
  2002年   781篇
  2001年   667篇
  2000年   639篇
  1999年   533篇
  1998年   384篇
  1997年   327篇
  1996年   280篇
  1995年   253篇
  1994年   209篇
  1993年   119篇
  1992年   120篇
  1991年   83篇
  1990年   53篇
  1989年   57篇
  1988年   42篇
  1987年   41篇
  1986年   30篇
  1985年   24篇
  1984年   11篇
  1983年   8篇
  1982年   15篇
  1981年   10篇
  1980年   7篇
  1979年   2篇
  1977年   1篇
  1959年   3篇
排序方式: 共有10000条查询结果,搜索用时 468 毫秒
1.
Electrocatalytic water splitting is an important method to produce green and renewable hydrogen (H2). One of the hindrances for wide applications of electrocatalysis in H2 production is the lack of freshwater resources. Comparatively, seawater splitting has become an effective approach for large-scale H2 production due to its abundant reserves. However, the increased complexity of seawater content emerged more problems in electrocatalytic seawater splitting. Recently, various strategies have been reported on improving the performance of electrocatalysts applied in seawater. Herein, this review firstly analyzed the mechanisms and challenges of electrocatalytic seawater splitting to evolve H2, and summarized the recent progress on H2 production in electrocatalytic seawater splitting. Furthermore, suggestions for future work have been provided for guidance.  相似文献   
2.
‘Renewable energy is an essential part of our strategy of decarbonization, decentralization, as well as digitalization of energy.’ – Isabelle Kocher.Current climate, health and economic condition of our globe demands the use of renewable energy and the development of novel materials for the efficient generation, storage and transportation of renewable energy. Hydrogen has been recognised as one of the most prominent carriers and green energy source with challenging storage, enabling decarbonization. Photocatalytic H2 (green hydrogen) production processes are targeting the intensification of separated solar energy harvesting, storage and electrolysis, conventionally yielding O2/H2. While catalysis is being investigated extensively, little is done on bridging the gap, related to reactor unit design, optimisation and scaling, be it that of material or of operation. Herein, metals, oxides, perovskites, nitrides, carbides, sulphides, phosphides, 2D structures and heterojunctions are compared in terms of parameters, allowing for efficiency, thermodynamics or kinetics structure–activity relationships, such as the solar-to-hydrogen (STH). Moreover, prominent pilot systems are presented summarily.  相似文献   
3.
Proper management of the liquid water and heat produced in proton exchange membrane (PEM) fuel cells remains crucial to increase both its performance and durability. In this study, a two-phase flow and multicomponent model, called two-fluid model, is developed in the commercial COMSOL Multiphysics® software to investigate the liquid water heterogeneities in large area PEM fuel cells, considering the real flow fields in the bipolar plate. A macroscopic pseudo-3D multi-layers approach has been chosen and generalized Darcy's relation is used both in the membrane-electrode assembly (MEA) and in the channel. The model considers two-phase flow and gas convection and diffusion coupled with electrochemistry and water transport through the membrane. The numerical results are compared to one-fluid model results and liquid water measurements obtained by neutron imaging for several operating conditions. Finally, according to the good agreement between the two-fluid and experimentation results, the numerical water distribution is examined in each component of the cell, exhibiting very heterogeneous water thickness over the cell surface.  相似文献   
4.
Relatively low efficiency is the biggest obstacle to the popularization of water electrolysis, which is a particularly feasible way to produce super-pure hydrogen. Imposing a magnetic field can increase the hydrogen production efficiency of water electrolysis. However, the enhancement's detailed mechanism still lacks an insightful understanding of the bubbles' micro vicinity. Our recent work aims to understand why the micro-magnetohydrodynamic (MHD) convection hinders single bubbles' detachment on the microelectrode. A water electrolysis experiment by microelectrode is performed under an electrode-normal magnetic field, and dynamic analysis of the single bubble growing on microelectrodes is performed. The variation of bubble diameter with time in the presence or absence of the magnetic field was measured, and the forces acting on the bubble were quantified. The result shows that the micro-MHD convection, induced by Lorentz force, can give rise to a downward hydrodynamic pressure force that will not appear in large-scale MHD convection. This force can be of the same magnitude as the surface tension, so it dramatically hinders bubbles' detachment. Besides, the Kelvin force provides a new potential way for further improving the efficiency of water electrolysis.  相似文献   
5.
Utilization of 3D nanostructured Pt cathodes could obviously improve performances of proton exchange membrane fuel cells (PEMFCs) owing to the reduced tortuosity and the bi-continuous nanoporous structure. However, these cathodes usually suffer from the flooding problem ascribed to the ionomer-free and nanoscale pores which are more susceptible to water condensation. In this paper, ultra-thin nanoporous metal films (100 nm) were utilized to construct PEMFC cathodes and independent transport channels were designed separately for water and gas aiming at the flooding problem. Nanoporous gold (NPG) film was used as the model support for loading Pt nanoparticles owing to its controllable and stable structure. After optimizing the polytetrafluoroethylene (PTFE) content and carbon loading in the gas diffusion layer (GDL), plasma treatment under O2 atmosphere was used to pattern the GDL with independent water transport channels. The obtained liquid permeation coefficients and oxygen gains demonstrated the obviously improved water and O2 transport. By using a home-made optimized GDL and a nanoporous film cathode with pore size ~60 nm, the flooding problem could be facilely solved. With a Pt loading of ~16 μg cm?2, this 3D nanostructured cathode exhibits a PEMFC performance of ~957 mW cm?2 at 80 °C. The Pt power efficiency is about 4 times higher than that of the commercial Pt/C cathode (50 μg cm?2, 756 mW cm?2). Obviously, this study provides a simple but effective methodology to solve the water flooding problem in the ultra-thin nanoporous film cathodes which is applicable for other types of 3D nanostructured PEMFC cathodes.  相似文献   
6.
Hydrogen is gaining increased attention from industries and policymakers in China. However, most of the current demonstration projects in the country have relied on conventional energy sources, including industrial byproduct hydrogen and grey hydrogen produced from fossil fuels. Moreover, strategies and policy frameworks leading to a shift to green or low-carbon hydrogen have neither been explored in-depth nor been identified clearly in the context of China. This study aims at bridging such gaps. Roadmapping techniques enhanced by the Delphi method and SWOT analysis are used to survey hydrogen energy experts from government bodies, industries, and academia to achieve basic agreement on strategically enabling large-scale green hydrogen demonstrations followed by commercialisation in China. The outcome of two rounds of surveys showed that experts' opinions converged on a strategic roadmap with three stages of development. The corresponding policies needed in each stage are evaluated and selected to form a systemic framework.  相似文献   
7.
Three-dimensional Bödewadt flow (fluid rotates at a large enough distance from the stationary plate) of carbon nanomaterial is examined. Single walled and multi walled CNTs are dissolved in water and gasoline oil baseliquids. Darcy-Forchheimer porous medium is considered. Stationary disk is further stretched linearly in radial direction. Heat transfer effect is examined in presence of radiation and convection. Effect of viscous dissipation is accounted. Entropy generation rate is studied. By using adequate transformation (von Kármán relations), the flow field equations (PDEs) are transmitted into ODEs. Solutions to these ODEs are constructed via implementation of shooting method (bvp4c). In addition to Entropy generation rate, Bejan number, heat transfer rate (Nusselt number), skin friction and temperature of fluid are examined through involved physical parameters. Axial component of velocity intensifies with increment in nanoparticles volume fraction and ratio of stretching rate to angular velocity parameter while it decays with higher porosity parameter. Higher nanoparticles volume fraction and porosity parameter lead to decay in radial as well as tangential component of velocity. However it enhances with higher ratio of stretching rate to angular velocity parameter. Temperature of fluid directly varies with higher ratio of stretching rate to angular velocity parameter, radiation parameter, Eckert number, Biot number and nanoparticles volume fraction. Rate of Entropy generation is reduced with higher estimations of porosity parameter, nanoparticles volume fraction and radiation parameter. Skin friction coefficient decays with higher porosity parameter and ratio of stretching rate to angular velocity parameter. Intensification in porosity parameter, nanoparticles volume fraction and Biot number leads to higher Nusselt number. Prominent impact is shown by multiple-walled CNTs with gasoline oil basefluid than single-walled CNTs with water basefluid.  相似文献   
8.
在全国天然气管道“主干互联、区域成网”(以下简称“互联互通”)基础格局逐渐形成的背景下,天然气管网规模日益扩大、管道分支和气源增加,并且分布不集中、输送方向可变,使得输气方案更加灵活,可以更好地解决某些地域的供气紧张问题;但受现有站场和设备的限制,暂不能满足某些多线组合极限工况,使得“互联互通”的初衷难以全部实现。为了使得现有的各输气干线在实现“互联互通”之后可以满足更多的多线组合工况,在分析“互联互通”背景下M管网工况变化的基础上,研发了可以进行水力仿真和压气站方案制订的计算软件,并对3种极限工况下的不同输气量情况进行了可行性试算,进而基于试算结果提出了相应的管网改进建议。研究结果表明:(1)经验证,软件计算误差满足要求;(2)在M管道某处增设压气站或在某些输气站场配置压缩机组;(3) M管网改进调整后,可以完成大部分的多线组合极限工况,真正实现“互联互通”的输气方案。结论认为,该研究成果有助于推进全国天然气管网早日实现“互联互通”。  相似文献   
9.
As a symbol of sharing economy, ride-hailing services have spread to Asia, where various forms of services have been established according to the existing socio-technical regimes, including legal, policy, and environmental concerns. China, in particular, has accepted ride-hailing services by revising existing institutions. This study analyzes China’s acceptance of ride-hailing services in the socio-technical system context set up for legacy services. Simulation modeling, combined with transition theory and an agent-based model, is used to analyze the data. This study calculates consumer disutility based on mobility market share, reflecting consumer preference, and predicts the sustainability of ride-hailing services. The simulation results conclude that legalization and socio-technical context are of importance for sustainable mobility.  相似文献   
10.
Fault detection and isolation in water distribution networks is an active topic due to the nonlinearities of flow propagation and recent increases in data availability due to sensor deployment. Here, we propose an efficient two-step data driven alternative: first, we perform sensor placement taking the network topology into account; second, we use incoming sensor data to build a network model through online dictionary learning. Online learning is fast and allows tackling large networks as it processes small batches of signals at a time. This brings the benefit of continuous integration of new data into the existing network model, either in the beginning for training or in production when new data samples are gathered. The proposed algorithms show good performance in our simulations on both small and large-scale networks.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号