首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   29322篇
  免费   2918篇
  国内免费   2057篇
电工技术   311篇
技术理论   1篇
综合类   1929篇
化学工业   11543篇
金属工艺   3016篇
机械仪表   498篇
建筑科学   953篇
矿业工程   504篇
能源动力   1169篇
轻工业   3343篇
水利工程   192篇
石油天然气   937篇
武器工业   192篇
无线电   1475篇
一般工业技术   5812篇
冶金工业   1285篇
原子能技术   409篇
自动化技术   728篇
  2024年   87篇
  2023年   473篇
  2022年   803篇
  2021年   1035篇
  2020年   910篇
  2019年   950篇
  2018年   852篇
  2017年   1051篇
  2016年   1089篇
  2015年   1048篇
  2014年   1474篇
  2013年   2068篇
  2012年   1794篇
  2011年   2020篇
  2010年   1581篇
  2009年   1693篇
  2008年   1526篇
  2007年   1716篇
  2006年   1565篇
  2005年   1271篇
  2004年   1229篇
  2003年   1060篇
  2002年   907篇
  2001年   746篇
  2000年   728篇
  1999年   566篇
  1998年   528篇
  1997年   478篇
  1996年   408篇
  1995年   324篇
  1994年   327篇
  1993年   270篇
  1992年   278篇
  1991年   275篇
  1990年   227篇
  1989年   161篇
  1988年   116篇
  1987年   79篇
  1986年   68篇
  1985年   109篇
  1984年   110篇
  1983年   64篇
  1982年   63篇
  1981年   30篇
  1980年   20篇
  1979年   21篇
  1978年   14篇
  1977年   18篇
  1976年   15篇
  1951年   13篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
1.
Poly(l ‐lactic acid) (PLLA) is a biodegradable and biocompatible thermoplastic polyester produced from renewable sources, widely used for biomedical devices, in food packaging and in agriculture. It is a semicrystalline polymer, and as such its properties are strongly affected by the developed semicrystalline morphology. As a function of the crystallization temperature, PLLA can form different crystal modifications, namely α′‐crystals below about 120 °C and α‐crystals at higher temperatures. The α′ modification is therefore of special importance as it may be the preferred polymorph developing at processing‐relevant conditions. It is a metastable modification which typically transforms into the more stable α‐crystals on annealing at elevated temperature. The structure, kinetics of formation and thermodynamics of α′‐ and α‐crystals of PLLA are reviewed in this contribution, together with the effect of α′‐/α‐crystal polymorphism on the properties of PLLA. © 2018 Society of Chemical Industry  相似文献   
2.
《Ceramics International》2021,47(23):33223-33231
The effects of pH of the reaction solution and the concentration of phosphoric acid on the crystal growth behavior of LaPO4 crystallites were investigated and the mechanical properties of rare-earth phosphates were compared. As a result, the concentration of phosphoric acid of 10% was beneficial to the crystal growth of LaPO4 nanocrystalline. When the pH value of the reaction solution was 2, the size of LaPO4 crystallites increased gradually with the increasing reaction temperature, and the smallest crystallite size of 43.27 nm was obtained after heat-treatment at 1000 °C. Simultaneously, the activation energy for crystal growth of LaPO4 nanocrystalline was relatively lower (26.82 kJ mol−1). With the decreasing radii of rare-earth ions, the hardness, Young's modulus and fracture toughness of the bulk rare-earth phosphates exhibited a reduced tendency, resulted from the increase of porosity under the same preparation process.  相似文献   
3.
Recently, the successful synthesis of wafer-scale single-crystal graphene, hexagonal boron nitride (hBN), and MoS2 on transition metal surfaces with step edges boosted the research interests in synthesizing wafer-scale 2D single crystals on high-index substrate surfaces. Here, using hBN growth on high-index Cu surfaces as an example, a systematic theoretical study to understand the epitaxial growth of 2D materials on various high-index surfaces is performed. It is revealed that hBN orientation on a high-index surface is highly dependent on the alignment of the step edges of the surface as well as the surface roughness. On an ideal high-index surface, well-aligned hBN islands can be easily achieved, whereas curved step edges on a rough surface can lead to the alignment of hBN along with different directions. This study shows that high-index surfaces with a large step density are robust for templating the epitaxial growth of 2D single crystals due to their large tolerance for surface roughness and provides a general guideline for the epitaxial growth of various 2D single crystals.  相似文献   
4.
《Ceramics International》2021,47(24):34648-34656
The ability to combine layers with high mechanical strength and additional physicochemical properties, such as biocompatibility, makes the use of multilayer coatings attractive for various applications. The transition from single layer to nanolaminate architecture can improve the mechanical performance of the coatings by increasing the number of interfaces and decreasing the modulation period of the layers. The microstructural study of the nanolaminate (Al0·5Ti0.5)N/ZrN coating with a modulation period λ of ≃ 20 nm was carried out using the TEM-HRTEM method. It was found that the coatings of (Al0·5Ti0.5)N/ZrN series consisted of two phases: the fcc-(Ti,Al)N solid solution obtained by isomorphic substitution of Ti atoms with Al ones in the TiN crystal lattice and the cubic ZrN phase. ZrN layers had a high texture structure with [111]-preferred growth texture and made a dominant effect on the nucleation and growth of (Al0·5Ti0.5)N layers. The epitaxial growth process was the most pronounced for fcc-(Ti,Al)N (111)||fcc-(ZrN) (111) and fcc-(Ti,Al)N (200)||fcc-(ZrN) (200) grains. Finally, the new coating demonstrated high biocompatibility, failure to toxicity and supported U2OS osteogenic cells proliferation within 7 days of cultivation.  相似文献   
5.
6.
7.
In flash sintering experiments, the thermal history of the sample is key to understanding the mechanisms underlying densification rate and final properties. By combining robust temperature measurements with current-ramp-rate control, this study examined the effects of the thermal profile on the flash sintering of yttria-stabilized zirconia, with experiments ranging from a few seconds to several hours. The final density was maximized at slower heating rates, although processes slower than a certain threshold led to grain growth. The amount of grain growth observed was comparable to a similar conventional thermal process. The bulk electrical conductivity correlated with the maximum temperature and cooling rate. The only property that exhibited behavior that could not be attributed to solely the thermal profile was the grain boundary conductivity, which was consistently higher than conventional in flash sintered samples. These results suggest that, during flash sintering, athermal electric field effects are relegated to the grain boundary.  相似文献   
8.
The enhancement in intrinsic catalytic activity and material conductivity of an electrocatalyst can leads to promoting HER activity. Herein, a successful nitrogenation of CoS2 (N–CoS2) catalyst has been investigated through the facile hydrothermal process followed by N2 annealing treatment. An optimized N–CoS2 catalyst reveals an outstanding hydrogen evolution reaction (HER) performance in alkaline as well as acidic electrolyte media, exhibiting an infinitesimal overpotential of ?0.137 and ?0.097 V at a current density of ?10 mA/cm2 (?0.309 and ?0.275 V at ?300 mA/cm2), corresponding respectively, with a modest Tafel slope of 117 and 101 mV/dec. Moreover, a static voltage response was observed at low and high current rates (?10 to ?100 mA/cm2) along with an excellent endurance up to 50 h even at ?100 mA/cm2. The excellent catalytic HER performance is ascribed to improved electronic conductivity and enhanced electrochemically active sites, which is aroused from the synergy and mutual interaction between heteroatoms that might have varied the surface chemistry of an active catalyst.  相似文献   
9.
Sr0.9La0.1TiO3 based textured ceramics (SLTT-S3T) with a texture fraction of 0.81 are successfully fabricated by the reactive template grain growth method, in which Sr0.9La0.1TiO3/20 wt%Ti was used as matrix and 10 wt% plate-like Sr3Ti2O7 template seeds were used as templates. The phase transition, microstructure evolution, and the anisotropic thermoelectric properties of SLTT-S3T ceramics were investigated. The results show that the ceramics are mainly composed of Sr0.9La0.1TiO3 and rutile TiO2 phases. Grains grow with a preferred orientation along (h00). A maximum ZT of 0.26 at 1073 K was achieved in the direction perpendicular to the tape casting direction. The low lattice thermal conductivity of 1.9 W/(m K) at 1073 K was obtained decreased by 34%, 40%, and 38% compared with non-textured, SrTiO3 and Sr0.9La0.1TiO3 ceramics prepared by the same process, can be attributed to the enhanced phonon scattering by the complex multi-scale boundaries and interfaces. This work provides a strategy of microstructural design for thermoelectric oxides to decrease intrinsic lattice thermal conductivity and further regulate thermoelectric properties via texture engineering.  相似文献   
10.
With the increase of industrialization and urbanization, humankind faces massive oil-based pollution due to tanker accidents, human error, and natural disasters. For this, hydrophobic sorbents are fabricated and their applications for the removal of oil from polluted water sources are investigated. These hydrophobic sorbents are prepared by the condensation reaction of poly(dimethylsiloxane) and tris[3-(trimethoxysilyl)propyl]isocyanurate cross-linker via bulk polymerization. The obtained sorbents exhibit high oil sorption capacity, fast absorption–desorption kinetics, and great reusability. Moreover, they can selectively absorb oil from the water surface, thus making them practical for water clean-up applications.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号