首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   36751篇
  免费   4143篇
  国内免费   2626篇
电工技术   1990篇
技术理论   2篇
综合类   4460篇
化学工业   3263篇
金属工艺   2023篇
机械仪表   1642篇
建筑科学   7816篇
矿业工程   1864篇
能源动力   948篇
轻工业   2596篇
水利工程   2419篇
石油天然气   1524篇
武器工业   348篇
无线电   2627篇
一般工业技术   4692篇
冶金工业   1448篇
原子能技术   141篇
自动化技术   3717篇
  2024年   141篇
  2023年   499篇
  2022年   960篇
  2021年   1212篇
  2020年   1260篇
  2019年   1144篇
  2018年   1065篇
  2017年   1348篇
  2016年   1497篇
  2015年   1500篇
  2014年   2268篇
  2013年   2385篇
  2012年   2753篇
  2011年   2975篇
  2010年   2300篇
  2009年   2284篇
  2008年   2130篇
  2007年   2525篇
  2006年   2190篇
  2005年   1934篇
  2004年   1524篇
  2003年   1310篇
  2002年   1038篇
  2001年   878篇
  2000年   751篇
  1999年   674篇
  1998年   532篇
  1997年   448篇
  1996年   360篇
  1995年   348篇
  1994年   268篇
  1993年   208篇
  1992年   167篇
  1991年   133篇
  1990年   114篇
  1989年   98篇
  1988年   69篇
  1987年   39篇
  1986年   37篇
  1985年   26篇
  1984年   25篇
  1983年   26篇
  1982年   20篇
  1981年   11篇
  1980年   14篇
  1979年   12篇
  1977年   4篇
  1964年   2篇
  1961年   2篇
  1958年   3篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
In the present work, the bonding length, electronic structure, stability, and dehydrogenation properties of the Perovskite-type ZrNiH3 hydride, under different uniaxial/biaxial strains are investigated through ab-initio calculations based on the plane-wave pseudo-potential (PW-PP) approach. The findings reveal that the uniaxial/biaxial compressive and tensile strains are responsible for the structural deformation of the ZrNiH3 crystal structure, and its lattice deformation becomes more significant with decreasing or increasing the strain magnitude. Due to the strain energy contribution, the uniaxial/biaxial strain not only lowers the stability of ZrNiH3 but also decreases considerably the dehydrogenation enthalpy and decomposition temperature. Precisely, the formation enthalpy and decomposition temperature are reduced from ?67.73 kJ/mol.H2 and 521 K for non-strained ZrNiH3 up to ?33.73 kJ/mol.H2 and 259.5 K under maximal biaxial compression strain of ε = ?6%, and to ?50.99 kJ/mol.H2 and 392.23 K for the maximal biaxial tensile strain of ε = +6%. The same phenomenon has been also observed for the uniaxial strain, where the formation enthalpy and decomposition temperature are both decreased to ?39.36 kJ/mol.H2 and 302.78 K for a maximal uniaxial compressive strain of ε = - 12%, and to ?51.86 kJ/mol.H2 and 399 K under the maximal uniaxial tensile strain of ε = +12%. Moreover, the densities of states analysis suggests that the strain-induced variation in the dehydrogenation and structural properties of ZrNiH3 are strongly related to the Fermi level value of total densities of states. These ab-initio calculations demonstrate insightful novel approach into the development of Zr-based intermetallic hydrides for hydrogen storage practical applications.  相似文献   
2.
Engineering new glass compositions have experienced a sturdy tendency to move forward from (educated) trial-and-error to data- and simulation-driven strategies. In this work, we developed a computer program that combines data-driven predictive models (in this case, neural networks) with a genetic algorithm to design glass compositions with desired combinations of properties. First, we induced predictive models for the glass transition temperature (Tg) using a dataset of 45,302 compositions with 39 different chemical elements, and for the refractive index (nd) using a dataset of 41,225 compositions with 38 different chemical elements. Then, we searched for relevant glass compositions using a genetic algorithm informed by a design trend of glasses having high nd (1.7 or more) and low Tg (500 °C or less). Two candidate compositions suggested by the combined algorithms were selected and produced in the laboratory. These compositions are significantly different from those in the datasets used to induce the predictive models, showing that the used method is indeed capable of exploration. Both glasses met the constraints of the work, which supports the proposed framework. Therefore, this new tool can be immediately used for accelerating the design of new glasses. These results are a stepping stone in the pathway of machine learning-guided design of novel glasses.  相似文献   
3.
By the first-principles calculations, the sensitivity of CO, H2O and NO adsorption on Au doped SnSe2 monolayer surface is investigated. The results show that CO and H2O molecules are physically adsorbed on Au doped SnSe2 monolayer and act as donors to transfer 0.012 e and 0.044 e to the substrate, respectively. However, the NO molecule is chemically adsorbed on substrate and acts as an acceptor to obtain 0.116 e from the substrate. In addition, our results also show that the biaxial strain can effectively improve the adsorption energy and charge transfer of gas molecules adsorbed on the substrate surface. Also, the recovery time of desorbed gas molecules on the substrate surface is calculated, and the results indicate that the Au doped SnSe2 is a perfect sensing material for detection and recovery of CO and NO under ?8% strain.  相似文献   
4.
5.
6.
为缓解我国水、能源和粮食资源紧张问题,促进资源可持续利用,构建水-能源-粮食系统,利用耦合协调度模型对我国的30个省(自治区、直辖市)进行测算,并利用空间杜宾模型分析主要影响因素。结果表明:2003—2017年,我国能源、粮食评价[JP]指数高于水资源评价指数,系统综合评价指数逐年递增;大部分省份耦合协调度处于初级协调水平且呈现逐年上升的态势,个别省份耦合协调度濒临失调;耦合协调度空间自相关性较强,虽有明显波动,但是呈现逐年加强的态势;影响耦合协调度的主要因素有从业人口数、固定资产投资额、人均生产总值、人口总数、[JP]文盲人口占比、工业污染排放、城镇化。  相似文献   
7.
《Ceramics International》2021,47(22):31470-31475
In this study, the impact of cobalt oxide (CoO) on the structure, stability, linear and nonlinear optical parameters of B2O3–Na2O–ZnO glasses was scrutinized. A series of glass system (ZnCoNaB-glasses) was successfully prepared through the melt quenching approach. Optical absorbance, reflectance, transmittance and FTIR spectroscopy were performed for all ZnCoNaB-glasses. The FTIR results showed that the BO4 units are enhanced while nonbridging oxygens are decreased with further CoO addition. Furthermore, ZnO exists as four-coordinated [ZnO4] units and these units decreased with further doping of CoO. These structural variations produce a decreasing impact in Urbach energy and nonlinear refractive index, meanwhile enhance the glass stability. Further, the metallization criterion (M) values indicate that our glass samples can be used for a new generation of nonlinear optical glasses. The preceding results can predict that the investigated ZnCoNaB-glasses will be utilized in versatile applications; especially optical switching and computing.  相似文献   
8.
A strategy that constructs the morphotropic phase boundary and manipulates the domain structure has been used to design the component of 0.96[Bi0.5(Na0.84K0.16)0.5Ti(1-x)NbxO3]-0.04SrTiO3 (BNKT-4ST-100xNb) to enhance the strain properties for actuator application. Non-equivalent Nb5+ donor doping modulates the phase transition from the mixture of rhombohedral and tetragonal phases to the pseudocubic phase and results in the coexistence of multiple phases. Moreover, the high-resolution TEM confirms the existence of polar nano regions that contribute to the macroscopic relaxor behaviour. The size of the domains is reduced with increasing Nb5+, resulting in an enhanced relaxor behaviour. The ferroelectric-relaxor transition temperature decreases from 85 to below 30 °C, implying a non-ergodic to ergodic relaxor transition. An improved strain of 0.56% and a giant normalized strain of 1120 pm/V were achieved for BNKT-4ST-1.5Nb, which were attributed to the unique domain structure in which nanodomains are embedded in an undistorted cubic matrix. Ferroelectric, antiferroelectric, and relaxor phases coexist. As the electric field is large enough, a reversible phase transition occurs. Furthermore, good temperature stability was obtained due to the stability of the nanodomains, and no degradation in strains was observed even after 104 cycles, which may originate from the reversible phase transition and dynamic domain wall. The results show that this design strategy offers a reference way to improve the strain behaviour and that BNKT-4ST-100xNb ceramics could be a potential material for high-displacement actuator applications.  相似文献   
9.
The realization of liquid metal-based wearable systems will be a milestone toward high-performance, integrated electronic skin. However, despite the revolutionary progress achieved in many other components of electronic skin, liquid metal-based flexible sensors still suffer from poor sensitivity due to the insufficient resistance change of liquid metal to deformation. Herein, a nacre-inspired architecture composed of a biphasic pattern (liquid metal with Cr/Cu underlayer) as “bricks” and strain-sensitive Ag film as “mortar” is developed, which breaks the long-standing sensitivity bottleneck of liquid metal-based electronic skin. With 2 orders of magnitude of sensitivity amplification while maintaining wide (>85%) working range, for the first time, liquid metal-based strain sensors rival the state-of-art counterparts. This liquid metal composite features spatially regulated cracking behavior. On the one hand, hard Cr cells locally modulate the strain distribution, which avoids premature cut-through cracks and prolongs the defect propagation in the adjacent Ag film. On the other hand, the separated liquid metal cells prevent unfavorable continuous liquid-metal paths and create crack-free regions during strain. Demonstrated in diverse scenarios, the proposed design concept may spark more applications of ultrasensitive liquid metal-based electronic skins, and reveals a pathway for sensor development via crack engineering.  相似文献   
10.
ABSTRACT

Nine sowing densities of linseed were compared in a two-year experiment. Self-regulation of the density of a linseed stand resulted in a differentiated branching of the plants. The number of capsules on a linseed shoot, as well as seeds in the capsule, and the number of seeds from the shoot were highly varied from year to year, and there is even a stronger differentiation in the weight of 1000 seeds. Linear relationships were noted between the mass of seeds from the linseed plant and the number of capsules. The yield of linseed was affected by both factors. An increasing sowing rate reduced the seed yield from the shoot and the plant. At lower seeding rates, the lateral shoots contributed in the seeds yield of the plant to a higher degree compared to the main ones.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号