首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   25729篇
  免费   5150篇
  国内免费   3820篇
电工技术   1443篇
技术理论   8篇
综合类   2762篇
化学工业   2152篇
金属工艺   683篇
机械仪表   1880篇
建筑科学   1611篇
矿业工程   743篇
能源动力   907篇
轻工业   669篇
水利工程   1009篇
石油天然气   1018篇
武器工业   227篇
无线电   4096篇
一般工业技术   2817篇
冶金工业   729篇
原子能技术   531篇
自动化技术   11414篇
  2024年   279篇
  2023年   725篇
  2022年   1415篇
  2021年   1474篇
  2020年   1429篇
  2019年   1152篇
  2018年   978篇
  2017年   1146篇
  2016年   1245篇
  2015年   1244篇
  2014年   1746篇
  2013年   1845篇
  2012年   2083篇
  2011年   2141篇
  2010年   1722篇
  2009年   1696篇
  2008年   1657篇
  2007年   1743篇
  2006年   1503篇
  2005年   1263篇
  2004年   1072篇
  2003年   895篇
  2002年   787篇
  2001年   633篇
  2000年   537篇
  1999年   405篇
  1998年   330篇
  1997年   305篇
  1996年   234篇
  1995年   184篇
  1994年   162篇
  1993年   110篇
  1992年   97篇
  1991年   67篇
  1990年   60篇
  1989年   81篇
  1988年   42篇
  1987年   22篇
  1986年   32篇
  1985年   33篇
  1984年   21篇
  1983年   24篇
  1982年   18篇
  1981年   19篇
  1980年   10篇
  1979年   8篇
  1977年   5篇
  1975年   3篇
  1959年   4篇
  1951年   6篇
排序方式: 共有10000条查询结果,搜索用时 406 毫秒
1.
Small object detection is challenging and far from satisfactory. Most general object detectors suffer from two critical issues with small objects: (1) Feature extractor based on classification network cannot express the characteristics of small objects reasonably due to insufficient appearance information of targets and a large amount of background interference around them. (2) The detector requires a much higher location accuracy for small objects than for general objects. This paper proposes an effective and efficient small object detector YOLSO to address the above problems. For feature representation, we analyze the drawbacks in previous backbones and present a Half-Space Shortcut(HSSC) module to build a background-aware backbone. Furthermore, a coarse-to-fine Feature Pyramid Enhancement(FPE) module is introduced for layer-wise aggregation at a granular level to enhance the semantic discriminability. For loss function, we propose an exponential L1 loss to promote the convergence of regression, and a focal IOU loss to focus on prime samples with high classification confidence and high IOU. Both of them significantly improves the location accuracy of small objects. The proposed YOLSO sets state-of-the-art results on two typical small object datasets, MOCOD and VeDAI, at a speed of over 200 FPS. In the meantime, it also outperforms the baseline YOLOv3 by a wide margin on the common COCO dataset.  相似文献   
2.
《Ceramics International》2022,48(11):15207-15217
SCAPS solar cell simulation program was applied to model an inverted structure of perovskite solar cells using Cu-doped Ni1-xO thin films as hole transport layer. The Cu-doped Ni1-xO film were made by co-sputtering deposition under different deposition conditions. By increasing the amount of the Cu-dopant, the film crystallinity enhanced whereas the bandgap energy decreased. The transmittance of the thin films decreased significantly by increasing the sputtering power of copper. High quality, uniform, compact, and pin-hole free films with low surface roughness were achieved. The structural, chemical, surface morphology, optical, electrical, and electronic properties of the Cu doped Ni1-xO films were used as input parameters in the simulation of Pb-based (MAPbI3-xClx) and Pb-free (MAGeI3) perovskite solar cells. Simulation results showed that the performance of both Pb-based and Pb-free perovskite solar cell devices significantly enhanced with Cu-doped Ni1-xO film. The highest power conversion efficiency (PCE) for the Pb-free perovskite solar cell is 8.9% which is lower than the highest PCE of 17.5% for the Pb-based perovskite solar cell.  相似文献   
3.
In this study, the effects of cell temperature and relative humidity on charge transport parameters are numerically analyzed. In order to perform this analysis, three-dimensional and anisotropic numerical models are developed. The numerical models are integrated into the experimental values for anisotropic electrical conductivities, as depending on cell temperature and relative humidity, that were obtained from our previous study. The achieved results indicate that the values of current densities in the in-plane direction increase with increasing cell temperature and relative humidity, while the current densities reach a maximum in the rib regions for both the numerical model at the through-plane direction. The behaviors of electrolyte potentials are similar with changes in the cell temperature and relative humidity. In addition, the cathode electrical potentials in both the in-plane direction and through-plane direction do not change to a considerable amount with increasing cell temperature and relative humidity.  相似文献   
4.
《Ceramics International》2022,48(13):18151-18156
The electrical properties and domain reversal in BiFeO3 ferroelectric films were studied using sandwiched heterostructures and piezoresponse force microscopy. A robust polarization state was observed, combined with a switchable domain pattern and a remanent polarization of approximately 100 μC cm?2. In addition, domain reversal was explored using scanning probe microscopy. The results show that dipoles could be reversed along the direction of the electric field under a negative tip bias, leading to carrier gathering near the domain walls. The enhanced conductivity near the domain walls was owing to the discontinuous polarization boundary conditions. In addition, typical diode-like current transport properties are sensitive to various temperature conditions, which is attributed to the Schottky barriers at the contact interface. These findings extend the current understanding of domain texture reversal in ferroelectric films and shed light on their potential applications for future ferroelectric random-access memory operations over a wide temperature range.  相似文献   
5.
Manufacturing companies not only strive to deliver flawless products but also monitor product failures in the field to identify potential quality issues. When product failures occur, quality engineers must identify the root cause to improve any affected product and process. This root-cause analysis can be supported by feature selection methods that identify relevant product attributes, such as manufacturing dates with an increased number of product failures. In this paper, we present different methods for feature selection and evaluate their ability to identify relevant product attributes in a root-cause analysis. First, we compile a list of feature selection methods. Then, we summarize the properties of product attributes in warranty case data and discuss these properties regarding the challenges they pose for machine learning algorithms. Next, we simulate datasets of warranty cases, which emulate these product properties. Finally, we compare the feature selection methods based on these simulated datasets. In the end, the univariate filter information gain is determined to be a suitable method for a wide range of applications. The comparison based on simulated data provides a more general result than other publications, which only focus on a single use case. Due to the generic nature of the simulated datasets, the results can be applied to various root-cause analysis processes in different quality management applications and provide a guideline for readers who wish to explore machine learning methods for their analysis of quality data.  相似文献   
6.
Grass pea (Lathyrus sativus) is a leguminous plant of outstanding tolerance to abiotic stress. The aim of the presented study was to describe the mechanism of grass pea (Lathyrus sativus L.) photosynthetic apparatus acclimatisation strategies to salinity stress. The seedlings were cultivated in a hydroponic system in media containing various concentrations of NaCl (0, 50, and 100 mM), imitating none, moderate, and severe salinity, respectively, for three weeks. In order to characterise the function and structure of the photosynthetic apparatus, Chl a fluorescence, gas exchange measurements, proteome analysis, and Fourier-transform infrared spectroscopy (FT-IR) analysis were done inter alia. Significant differences in the response of the leaf and stem photosynthetic apparatus to severe salt stress were observed. Leaves became the place of harmful ion (Na+) accumulation, and the efficiency of their carboxylation decreased sharply. In turn, in stems, the reconstruction of the photosynthetic apparatus (antenna and photosystem complexes) activated alternative electron transport pathways, leading to effective ATP synthesis, which is required for the efficient translocation of Na+ to leaves. These changes enabled efficient stem carboxylation and made them the main source of assimilates. The observed changes indicate the high plasticity of grass pea photosynthetic apparatus, providing an effective mechanism of tolerance to salinity stress.  相似文献   
7.
本文分析了乌兰矿投产前期采矿现状及存在的主要问题,针对该矿所处蒙古国经济落后、投资风险大的现实状况,为避免生产中断、规避投资风险,早日回收前期投资考虑,采取了双斜坡道开拓、全尾胶结充填、高端壁空场嗣后充填采矿、多中段组合式连续开采等系列技术应对方案。大大降低了一次性投资规模及投资风险,前期投资得以快速回笼的同时,矿山产能也充分释放,确保了矿山的持续稳定,取得了较好的经济和社会效益。为海外地下近地表矿体开采矿山规避投资风险提供了很好的技术方案借鉴。  相似文献   
8.
The effects of particle size and carbon dioxide concentration on chemical conversion in engineered spherical particles undergoing calcium oxide looping are investigated. Particles are thermochemically cycled in a furnace under different carbon dioxide concentrations. Changes in composition due to chemical reactions are measured using thermogravimetric analysis. Gas composition at the furnace exit is evaluated with mass spectroscopy. A numerical model of thermal transport phenomena developed previously is adapted to match the physical system investigated in the present study. The model is used to elucidate effects of reacting medium characteristics on particle temperature and reaction extent. Experimental and numerical results show that (1) an increase in particle size results in a decrease in carbonation extent, and (2) the carbonation step consists of fast and slow reaction regimes. The reaction rates in the fast and slow carbonation regimes increase with increasing carbon dioxide concentration. The effect of carbon dioxide concentration and the distinction between the fast and slow regimes become more pronounced with increasing particle size.  相似文献   
9.
The calcium pump (sarco/endoplasmic reticulum Ca2+-ATPase, SERCA) plays a major role in calcium homeostasis in muscle cells by clearing cytosolic Ca2+ during muscle relaxation. Active Ca2+ transport by SERCA involves the structural transition from a low-Ca2+ affinity E2 state toward a high-Ca2+ affinity E1 state of the pump. This structural transition is accompanied by the countertransport of protons to stabilize the negative charge and maintain the structural integrity of the transport sites and partially compensate for the positive charges of the two Ca2+ ions passing through the membrane. X-ray crystallography studies have suggested that a hydrated pore located at the C-terminal domain of SERCA serves as a conduit for proton countertransport, but the existence and function of this pathway have not yet been fully characterized. We used atomistic simulations to demonstrate that in the protonated E2 state and the absence of initially bound water molecules, the C-terminal pore becomes hydrated in the nanosecond timescale. Hydration of the C-terminal pore is accompanied by the formation of water wires that connect the transport sites with the cytosol. Water wires are known as ubiquitous proton-transport devices in biological systems, thus supporting the notion that the C-terminal domain serves as a conduit for proton release. Additional simulations showed that the release of a single proton from the transport sites induces bending of transmembrane helix M5 and the interaction between residues Arg762 and Ser915. These structural changes create a physical barrier against full hydration of the pore and prevent the formation of hydrogen-bonded water wires once proton transport has occurred through this pore. Together, these findings support the notion that the C-terminal proton release pathway is a functional element of SERCA and also provide a mechanistic model for its operation in the catalytic cycle of the pump.  相似文献   
10.
Smartphones are being used and relied on by people more than ever before. The open connectivity brings with it great convenience and leads to a variety of risks that cannot be overlooked. Smartphone vendors, security policy designers, and security application providers have put a variety of practical efforts to secure smartphones, and researchers have conducted extensive research on threat sources, security techniques, and user security behaviors. Regrettably, smartphone users do not pay enough attention to mobile security, making many efforts futile. This study identifies this gap between technology affordance and user requirements, and attempts to investigate the asymmetric perceptions toward security features between developers and users, between users and users, as well as between different security features. These asymmetric perceptions include perceptions of quality, perceptions of importance, and perceptions of satisfaction. After scoping the range of smartphone security features, this study conducts an improved Kano-based method and exhaustively analyzes the 245 collected samples using correspondence analysis and importance satisfaction analysis. The 14 security features of the smartphone are divided into four Kano quality types and the perceived quality differences between developers and users are compared. Correspondence analysis is utilized to capture the relationship between the perceived importance of security features across different groups of respondents, and results of importance-satisfaction analysis provide the basis for the developmental path and resource reallocation strategy of security features. This article offers new insights for researchers as well as practitioners of smartphone security.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号