首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   52877篇
  免费   6699篇
  国内免费   3288篇
电工技术   11013篇
技术理论   2篇
综合类   5719篇
化学工业   2276篇
金属工艺   1539篇
机械仪表   4733篇
建筑科学   2787篇
矿业工程   1617篇
能源动力   1990篇
轻工业   1487篇
水利工程   2281篇
石油天然气   1661篇
武器工业   716篇
无线电   10765篇
一般工业技术   4307篇
冶金工业   1923篇
原子能技术   388篇
自动化技术   7660篇
  2024年   279篇
  2023年   758篇
  2022年   1379篇
  2021年   1623篇
  2020年   1690篇
  2019年   1378篇
  2018年   1360篇
  2017年   1792篇
  2016年   2072篇
  2015年   2311篇
  2014年   3338篇
  2013年   3167篇
  2012年   4114篇
  2011年   4396篇
  2010年   3399篇
  2009年   3251篇
  2008年   3193篇
  2007年   3945篇
  2006年   3358篇
  2005年   2758篇
  2004年   2235篇
  2003年   1968篇
  2002年   1625篇
  2001年   1426篇
  2000年   1164篇
  1999年   966篇
  1998年   737篇
  1997年   597篇
  1996年   491篇
  1995年   449篇
  1994年   394篇
  1993年   263篇
  1992年   213篇
  1991年   191篇
  1990年   135篇
  1989年   105篇
  1988年   81篇
  1987年   52篇
  1986年   28篇
  1985年   21篇
  1984年   22篇
  1983年   11篇
  1982年   20篇
  1981年   9篇
  1980年   17篇
  1979年   12篇
  1977年   5篇
  1975年   9篇
  1966年   5篇
  1963年   6篇
排序方式: 共有10000条查询结果,搜索用时 375 毫秒
1.
The effective and efficient utilization of low-calorific value (LCV) gases has gained increasing attention in scientific research and industrial fields. In this study, the combustion characteristics of three LCV gases in practical devices are analyzed by using a nonadiabatic perfectly stirred reactor model. The complete steady-state solution in the temperature-residence time parameter space is obtained with arc-length continuation. The stable operation region is quantified by the eigenvalue analysis. The transition of solution curves is quantified with heat loss coefficient. Five key system parameters are systematically investigated on their effects on stability limits. With the combustion performance being quantified by a combustion state index, a combustion state regulation method is proposed to find the optimal regulation path of system parameters. Active subspace method is further applied to shorten the regulation step by identifying the active direction. The proposed method and findings are useful for optimal regulation of burning LCV gases in industrial burners.  相似文献   
2.
《Ceramics International》2022,48(18):25984-25995
Design of architectured composites with layered-ordered structure can solve the strength-toughness mismatch problem of structural materials. In the present study, heterostructure Ti6Al4V/TiAl laminated composite sheets with different thicknesses of interface layer and TiAl composite layer were successfully produced by hot-pressing technology. The effects of interface regulation and laminated structure on their mechanical properties, crack propagation, and fracture behavior were studied. The results indicated that compressive strength of the sheets increased with the decrease in interface thickness. Compressive strength of TiAl composite sheet with thicker composite layer reached 1481.55 MPa at the arrester orientation with sintering holding time of 40 min, which was 25.96% higher than that of the sheet obtained at 120 min. Analysis indicated that the interface area transferred stress through slip bands and through-interface cracks. Compressive strength at the divider orientation reached 1443.06 MPa, which was 45.78% higher than that of the sheet obtained at 120 min. In this case, the interface area transferred stress through slip bands and along-interface cracks. For TiAl composite sheets with thinner composite layer, compressive strength was further improved to 1631.01 MPa and 1594.66 MPa at the arrester and divider orientations with sintering holding time of 40 min, respectively. The ductile metal layer exerted a significant toughening effect. Both interface regulation and laminated structure transformation could enhance the hetero-deformation induced (HDI) strengthening and improve the comprehensive mechanical properties of the composite sheets.  相似文献   
3.
The current article focuses on mass and thermal transfer analysis of a two-dimensional immovable combined convective nanofluid flow including motile microorganisms with temperature-dependent viscosity on top of a vertical plate through a porous medium, and a model has been developed to visualize the velocity slip impacts on a nonlinear partial symbiotic flow. The governed equations include all of the above physical conditions, and suitable nondimensional transfigurations are utilized to transfer the governed conservative equations to a nonlinear system of differential equations and obtain numerical solutions by using the Shooting method. Numerical studies have been focusing on the effects of intricate dimensionless parameters, namely, the Casson fluid parameter, Brownian motion parameter, thermophoresis parameter, Peclet number, bioconvection parameter, and Rayleigh number, which have all been studied on various profiles such as momentum, thermal, concentration, and density of microorganisms. The concentration boundary layer thickness and density of microorganisms increased as the Casson fluid parameter, Brownian and thermophoresis parameters increased, whereas the bioconvection parameter, Peclet number, and Rayleigh number increased. The thermal boundary layer thickness, concentration boundary layer thickness, and density of microorganisms all decreased. The velocity distribution decreases as the Peclet number, bioconvection, and thermophoresis parameters rise but rises as the Rayleigh number, Brownian motion parameter, and Casson fluid parameter rise. These are graphed via plots along with divergent fluid parameters.  相似文献   
4.
This paper introduces the design of a hardware efficient reconfigurable pseudorandom number generator (PRNG) using two different feedback controllers based four-dimensional (4D) hyperchaotic systems i.e. Hyperchaotic-1 and -2 to provide confidentiality for digital images. The parameter's value of these two hyperchaotic systems is set to be a specific value to get the benefits i.e. all the multiplications (except a few multiplications) are performed using hardwired shifting operations rather than the binary multiplications, which doesn't utilize any hardware resource. The ordinary differential equations (ODEs) of these two systems have been exploited to build a generic architecture that fits in a single architecture. The proposed architecture provides an opportunity to switch between two different 4D hyperchaotic systems depending on the required behavior. To ensure the security strength, that can be also used in the encryption process in which encrypt the input data up to two times successively, each time using a different PRNG configuration. The proposed reconfigurable PRNG has been designed using Verilog HDL, synthesized on the Xilinx tool using the Virtex-5 (XC5VLX50T) and Zynq (XC7Z045) FPGA, its analysis has been done using Matlab tool. It has been found that the proposed architecture of PRNG has the best hardware performance and good statistical properties as it passes all fifteen NIST statistical benchmark tests while it can operate at 79.101-MHz or 1898.424-Mbps and utilize only 0.036 %, 0.23 %, and 1.77 % from the Zynq (XC7Z045) FPGA's slice registers, slice LUTs, and DSP blocks respectively. Utilizing these PRNGs, we design two 16 × 16 substitution boxes (S-boxes). The proposed S-boxes fulfill the following criteria: Bijective, Balanced, Non-linearity, Dynamic Distance, Strict Avalanche Criterion (SAC) and BIC non-linearity criterion. To demonstrate these PRNGs and S-boxes, a new three different scheme of image encryption algorithms have been developed: a) Encryption using S-box-1, b) Encryption using S-box-2 and, c) Two times encryption using S-box-1 and S-box-2. To demonstrate that the proposed cryptosystem is highly secure, we perform the security analysis (in terms of the correlation coefficient, key space, NPCR, UACI, information entropy and image encryption quantitatively in terms of (MSE, PSNR and SSIM)).  相似文献   
5.
《Ceramics International》2022,48(13):18793-18802
The luminescence center energy transfer, crystal field strength, and covalency are limited by the crystal structure of the host and subsequently affect the luminescence efficiency, color, and intensity. Here, we report an excellent red phosphor BaLaLiWO6:0.40Eu3+ and the dependence between symmetry and luminous performance. A model for changing symmetry is drawn by analyzing the Coulomb potential and structure for the application of a double-perovskite phosphor BLLWO: Dy3+, Eu3+ in white light LEDs. The addition of Dy3+/Eu3+ makes the W-O bond formed by the B-site and oxygen ion longer and the Li-O bond shorter, and the difference between the eight octahedral around the A-site is reduced, increasing the symmetry of the A-site. Local symmetry was successfully modulated by changing the Eu3+ concentration to control the Y/B ratio of Dy3+ and the R/O ratio of Eu3+ and smoothly achieved (0.382, 0.373) warm white light color coordinate. The phosphor has excellent thermal stability and still has 92.3% intensity at 475 K. The above results show that the wavelength composition of the luminescence is tunable by changing the symmetry of the environment in which the doped ions are located. It applies to single hosts for the regulation of white light emission.  相似文献   
6.
Ferrites are materials of interest due to their broad applications in high technological devices and a lot of research has been focused to synthesize new ferrites. In this regard, an effort has been devoted to synthesize spinel Pr–Ni co-substituted strontium ferrites with a nominal formula of Sr1-xPrxFe2-yNiyO4 (0.0 ≤ x ≤ 0.1, 0.0 ≤ y ≤ 1.0). The cubic structure of pure and Pr–Ni co-substituted strontium ferrite samples calcinated at 1073 K for 3 h has been confirmed through X-ray diffraction (XRD). Average sizes of crystallites (18–25 nm) have been estimated from XRD analysis and nanometer particle sizes of synthesized ferrites have been further verified by scanning electron microscopy (SEM). SEM results have also shown that particles are mostly agglomerated and all the samples possess porosity. It has been observed that at 298 K, the values of resistivity (ρ) increase, while that of AC conductivity, dielectric loss, and dielectric constants decrease with increasing amounts of Pr3+ and Ni2+ ions. The values of dielectric parameters initially decrease with frequency and later become constant and can be explained on the basis of dielectric polarization. Electrochemical impedance spectroscopy (EIS) studies show that the charge transport phenomenon in ferrite materials is mainly controlled via grain boundaries. Overall, synthesized ferrite materials own enhanced resistivity values in the range of 1.38 × 109–1.94 × 109 Ω cm and minimum dielectric losses, which makes them suitable candidates for high frequency devices applications.  相似文献   
7.
针对新一代5G波形的F-OFDM技术开展了研究,通过把一个宽带分为若干个子带,对每个子带进行滤波处理以实现更好的通信效能。基于Simulink平台进行了F-OFDM仿真系统的搭建,重点对F-OFDM符号同步方法和频偏估计方法进行了研究与仿真分析。实验结果表明,基于Chu序列相比采用PN序列可以获得更好的同步效果,基于导频的Classen频偏估计算法相比基于CP的CFO估计算法和基于训练序列的Moose估计方法可以获得更好的频偏估计效果。  相似文献   
8.
In recent years, Internet of Things (IoT) devices are used for remote health monitoring. For remotely monitoring a patient, only the health information at different time points are not sufficient; predicted values of biomarkers (for some future time points) are also important. In this article, we propose a powerful statistical model for an efficient dynamic patient monitoring using wireless sensor nodes through Bayesian Learning (BL). We consider the setting where a set of correlated biomarkers are measured from a patient through wireless sensors, but the sensors only report the ordinal outcomes (say, good, fair, high, or very high) to the sink based on some prefixed thresholds. The challenge is to use the ordinal outcomes for monitoring and predicting the health status of the patient under consideration. We propose a linear mixed model where interbiomarker correlations and intrabiomarker dependence are modeled simultaneously. The estimated and the predicted values of the biomarkers are transferred over the internet so that health care providers and the family members of the patient can remotely monitor the patient. Extensive simulation studies are performed to assess practical usefulness of our proposed joint model, and the performance of the proposed joint model is compared to that of some other traditional models used in the literature.  相似文献   
9.
This paper investigates a renewable energy resource’s application to the Load–Frequency Control of interconnected power system. The Proportional-Integral (PI) controllers are replaced with Proportional-Integral Plus (PI+) controllers in a two area interconnected thermal power system without/with the fast acting energy storage devices and are designed based on Control Performance Standards (CPS) using conventional/Beta Wavelet Neural Network (BWNN) approaches. The energy storing devices Hydrogen generative Aqua Electroliser (HAE) with Fuel cell and Redox Flow Battery (RFB) are incorporated to the two area interconnected thermal power system to efficiently damp out the electromechanical oscillations in the power system because of their inherent efficient storage capacity in addition to the kinetic energy of the generator rotor, which can share the sudden changes in power requirements. The system was simulated and the frequency deviations in area 1 and area 2 and tie-line power deviations for 5% step- load disturbance in area 1 are obtained. The comparison of frequency deviations and tie-line power deviations of the two area interconnected thermal power system with HAE and RFB designed with BWNN controller reveals that the PI+ controller designed using BWNN approach is found to be superior than that of output response obtained using PI+ controller. Moreover the BWNN based PI+ controller exhibits a better transient and steady state response for the interconnected power system with Hydrogen generative Aqua Electroliser (AE) unit than that of the system with Redox Flow Battery (RFB) unit.  相似文献   
10.
目的研究热风辅助射频(hot air-assisted radio frequency,HA-RF)干燥过程中维生素C随温度变化的降解动力学模型。方法在6.5 cm极板间距和60℃热风系统条件下进行HA-RF干燥,重点研究胡萝卜丁中维生素C在干燥过程中的降解动力学,包括脱氢抗坏血酸(dehydroascorbic acid,DHAA)和抗坏血酸(ascorbic acid,AA)。总维生素C含量采用2,4-硝基苯肼分光光度法测定,AA采用2,6-二氯吲哚酚滴定法测定。结果HA-RF干燥过程中维生素C的降解规律符合一级可逆模型,其降解活化能为40.54 kJ/mol。DHAA活化能为35.83 kJ/mol,表明DHAA的稳定性低于AA。结论本研究使用的干燥温度为62.5~77.5℃,较高的干燥温度下维生素C降解速率较高,较低处理温度下的降解过程具有更好的模型适应度(R2>0.98)。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号