首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6246篇
  免费   434篇
  国内免费   230篇
电工技术   60篇
综合类   262篇
化学工业   2933篇
金属工艺   557篇
机械仪表   275篇
建筑科学   116篇
矿业工程   29篇
能源动力   33篇
轻工业   666篇
水利工程   8篇
石油天然气   50篇
武器工业   33篇
无线电   392篇
一般工业技术   1258篇
冶金工业   90篇
原子能技术   21篇
自动化技术   127篇
  2024年   25篇
  2023年   131篇
  2022年   131篇
  2021年   232篇
  2020年   192篇
  2019年   194篇
  2018年   156篇
  2017年   201篇
  2016年   193篇
  2015年   202篇
  2014年   285篇
  2013年   856篇
  2012年   339篇
  2011年   399篇
  2010年   268篇
  2009年   306篇
  2008年   264篇
  2007年   337篇
  2006年   315篇
  2005年   280篇
  2004年   240篇
  2003年   168篇
  2002年   146篇
  2001年   119篇
  2000年   136篇
  1999年   97篇
  1998年   118篇
  1997年   98篇
  1996年   66篇
  1995年   92篇
  1994年   60篇
  1993年   43篇
  1992年   54篇
  1991年   31篇
  1990年   20篇
  1989年   23篇
  1988年   18篇
  1987年   14篇
  1986年   12篇
  1985年   16篇
  1984年   7篇
  1983年   10篇
  1982年   10篇
  1976年   4篇
  1974年   1篇
  1959年   1篇
排序方式: 共有6910条查询结果,搜索用时 109 毫秒
1.
Abstract

The expected longer service life of modified asphalt can be jeopardized by different environmental factors, such as moisture, oxidation, etc. which affect the desired properties by altering the adhesive property. An insight into knowledge of the adhesive property of the asphalt can help in providing more durable asphalt pavement. The study attempted to develop different models of adhesive properties of polymers and carbon nanotubes (CNTs) modified asphalt binders. The polymer-CNT modified asphalt is processed to prepare different types of samples, by simulating the damage due to moisture and oxidization, following the corresponding standard method. An Atomic Force Microscopy (AFM) was employed to assess the nanoscale adhesion force of the tested samples following the existing functional group in asphalt. Finally, the study has developed Radial Basis Function Neural Network (RBFNN) as a function of different parameters including; asphalt chemistry (i.e. AFM tip type and constant), type and percentages of polymers and CNTs and different environmental exposures (oxidation, moisture, etc.) to predict the nano adhesion force of asphalt. It is observed that the adhesive property of the Styrene–Butadiene modified asphalt is more consistent compared to the Styrene–Butadiene–Styrene modified asphalt, while the presence of Single-Wall Nanotubes (SWNT) is observed to affect the adhesive properties of asphalt significantly as compared to Multi-Wall Nanotubes (MWNT). The higher accuracy level of RBFNN model also indicates that the functional group (tip-type) adding with the percentages and types of polymers and CNTs significantly affect the adhesive properties of asphalt.  相似文献   
2.
High‐performance adhesives require mechanical properties tuned to demands of the surroundings. A mismatch in stiffness between substrate and adhesive leads to stress concentrations and fracture when the bonding is subjected to mechanical load. Balancing material strength versus ductility, as well as considering the relationship between adhesive modulus and substrate modulus, creates stronger joints. However, a detailed understanding of how these properties interplay is lacking. Here, a biomimetic terpolymer is altered systematically to identify regions of optimal bonding. Mechanical properties of these terpolymers are tailored by controlling the amount of a methyl methacrylate stiff monomer versus a similar monomer containing flexible poly(ethylene glycol) chains. Dopamine methacrylamide, the cross‐linking monomer, is a catechol moiety analogous to 3,4‐dihydroxyphenylalanine, a key component in the adhesive proteins of marine mussels. Bulk adhesion of this family of terpolymers is tested on metal and plastic substrates. Incorporating higher amounts of poly(ethylene glycol) into the terpolymer introduces flexibility and ductility. By taking a systematic approach to polymer design, the region in which material strength and ductility are balanced in relation to the substrate modulus is found, thereby yielding the most robust joints.  相似文献   
3.
Anti-washout and tissue adhesion properties are essential for the clinical application of injectable bone materials. In this study, we prepared calcium phosphate cement (CPC) with anti-washout and tissue adhesion properties and attempted to build covalent bonds between CPC and the amino groups in bone tissue under a self-regulating pH system in the CPC (acidic to basic). The results of push-out tests demonstrated that a significant enhancement (from 6.42 ± 0.76 N to 61.5 ± 4.09 N) in tissue adhesion was obtained with the addition of 6% (w/w) oxidized sodium alginate (OSA) in CPC. The FTIR, XRD, anti-washout test, XPS, pH test, and SEM results suggested that the synergistic effect of OSA-citric acid (CA) led to the formation of a three-dimensional gel network structure in the CPC, and the Schiff base reaction between aldehyde and amino groups induced adhesion between CPC and the bone tissue. Further, the addition of less OSA had no significant negative effect on the hydration properties of CPC. Our work aims to promote the development of injectable bone material in clinical applications.  相似文献   
4.
5.
Technical ceramics exhibit exceptional high-temperature properties, but unfortunately their extreme crack sensitivity and high melting point make it challenging to manufacture geometrically complex structures with sufficient strength and toughness. Emerging additive manufacturing technologies enable the fabrication of large-scale complex-shape artifacts with architected internal topology; when such topology can be arranged at the microscale, the defect population can be controlled, thus improving the strength of the material. Here, ceramic micro-architected materials are fabricated using direct ink writing (DIW) of an alumina nanoparticle-loaded ink, followed by sintering. After characterizing the rheology of the ink and extracting optimal processing parameters, the microstructure of the sintered structures is investigated to assess composition, density, grain size and defect population. Mechanical experiments reveal that woodpile architected materials with relative densities of 0.38–0.73 exhibit higher strength and damage tolerance than fully dense ceramics printed under identical conditions, an intriguing feature that can be attributed to topological toughening.  相似文献   
6.
7.
Alkyd resins are generally used in the production of printing inks. All industries look for alternative raw materials in the production of ink with the growing inclination toward using natural products. Resins forming the vehicle of the ink to be obtained from natural resources will provide benefits for the environment, nature, and living creatures. The aim of the study was to promote the use of natural resin in the ink system. Natural Pinus pinaster resin was added into vegetable and mineral oil-based solvents in pure form with alkyd resin in different amounts and ink varnishes of different combinations were prepared. Then, printing inks were produced from these varnishes in pure and hybrid form. Following the assessment of the rheological properties of the inks prepared, printing tests were conducted to assess the printing quality parameters. Ideal mixing ratios of the natural resins in the ink were determined for printability. The environmental importance and advantages of the use of natural resins were discussed. Recommendations were given in line with the results to encourage widespread use of natural resins in near future.  相似文献   
8.
Proficiency on underlying mechanism of rubber-metal adhesion has been increased significantly in the last few decades. Researchers have investigated the effect of various ingredients, such as hexamethoxymethyl melamine, resorcinol, cobalt stearate, and silica, on rubber-metal interface. The role of each ingredient on rubber-metal interfacial adhesion is still a subject of scrutiny. In this article, a typical belt skim compound of truck radial tire is selected and the effect of each adhesive ingredient on adhesion strength is explored. Out of these ingredients, the effect of cobalt stearate is found noteworthy. It has improved adhesion strength by 12% (without aging) and by 11% (humid-aged), respectively, over control compound. For detailed understanding of the effect of cobalt stearate on adhesion, scanning electron microscopy and energy dispersive spectroscopy are utilized to ascertain the rubber coverage and distribution of elements. X-ray photoelectron spectroscopy results helped us to understand the impact of CuXS layer depth on rubber-metal adhesion. The depth profile of the CuXS layer was found to be one of the dominant factors of rubber-metal adhesion retention. Thus, this study has made an attempt to find the impact of different adhesive ingredients on the formation of CuXS layer depth at rubber-metal interface and establish a correlation with adhesion strength simultaneously.  相似文献   
9.
The ability of bacterial species to colonize and infect host organisms is critically dependent upon their capacity to adhere to cellular surfaces of the host. Adherence to cell surfaces is known to be essential for the activation and delivery of certain virulence factors, but can also directly affect host cell signaling to aid bacterial spread and survival. In this review we will discuss the recent advances in the field of bacterial adhesion, how we are beginning to unravel the effects adhesins have on host cell signaling, and how these changes aid the bacteria in terms of their survival and evasion of immune responses. Finally, we will highlight how the exploitation of bacterial adhesins may provide new therapeutic avenues for the treatment of a wide range of bacterial infections.  相似文献   
10.
居浩  黄晓明 《石油沥青》2006,20(4):54-60
微表处技术是一种性能优良的路面养护技术。首先检验了微表处用原材料的技术指标,在满足规范的要求下选择了三种不同级配,并对三种不同级配的微表处混和料的使用性能进行了比较。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号