首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9214篇
  免费   510篇
  国内免费   65篇
电工技术   255篇
综合类   31篇
化学工业   1883篇
金属工艺   204篇
机械仪表   241篇
建筑科学   316篇
矿业工程   12篇
能源动力   617篇
轻工业   984篇
水利工程   119篇
石油天然气   207篇
武器工业   6篇
无线电   1117篇
一般工业技术   1639篇
冶金工业   561篇
原子能技术   82篇
自动化技术   1515篇
  2023年   198篇
  2022年   366篇
  2021年   628篇
  2020年   478篇
  2019年   484篇
  2018年   612篇
  2017年   437篇
  2016年   502篇
  2015年   301篇
  2014年   456篇
  2013年   755篇
  2012年   518篇
  2011年   541篇
  2010年   365篇
  2009年   307篇
  2008年   270篇
  2007年   250篇
  2006年   207篇
  2005年   180篇
  2004年   144篇
  2003年   111篇
  2002年   128篇
  2001年   72篇
  2000年   79篇
  1999年   94篇
  1998年   164篇
  1997年   133篇
  1996年   75篇
  1995年   96篇
  1994年   61篇
  1993年   59篇
  1992年   44篇
  1991年   28篇
  1990年   33篇
  1989年   53篇
  1988年   49篇
  1987年   31篇
  1986年   33篇
  1985年   53篇
  1984年   48篇
  1983年   39篇
  1982年   32篇
  1981年   24篇
  1980年   32篇
  1979年   22篇
  1978年   19篇
  1977年   22篇
  1976年   34篇
  1975年   17篇
  1973年   18篇
排序方式: 共有9789条查询结果,搜索用时 15 毫秒
81.
The development, progression, or stabilization of the atherosclerotic plaque depends on the pro-inflammatory and anti-inflammatory macrophages. The influx of the macrophages and the regulation of macrophage phenotype, inflammatory or anti-inflammatory, are controlled by the small GTPase RhoA and its downstream effectors. Therefore, macrophages and the components of the RhoA pathway are attractive targets for anti-atherosclerotic therapies, which would inhibit macrophage influx and inflammatory phenotype, maintain an anti-inflammatory environment, and promote tissue remodeling and repair. Here, we discuss the recent findings on the role of macrophages and RhoA pathway in the atherosclerotic plaque formation and resolution and the novel therapeutic approaches.  相似文献   
82.
Silicon - Chemical reactivity, grindability and zeta potential have been measured and correlated for three variably deformed quartz varieties from three different areas. Results show that there is...  相似文献   
83.
Abdraboh  A. S.  Abdel-Aal  Ahmed A.  Ereiba  Khairy T. 《SILICON》2021,13(2):613-622
Silicon - In this study, inorganic-organic hybrid material consisting of tetraethyl orthosilicate (TEOS) and 3-methacryloxypropyl trimethoxysilane (MAPTMS) were prepared with sol-gel process and...  相似文献   
84.
Solay  Leo Raj  Singh  Sarabdeep  Kumar  Naveen  Amin  S. Intekhab  Anand  Sunny 《SILICON》2021,13(12):4633-4640
Silicon - In this treatise, we have proposed a Single Material Gate–Dual Gate Impact Ionization Metal Oxide Semiconductor (SMG DG-IMOS) based Pressure Sensor. The pressure sensor has the most...  相似文献   
85.
Faltakh  Hana  Bourguiga  Ramzi  Ahmed  Amira Ben 《SILICON》2021,13(12):4201-4213
Silicon - This paper presents recent progress in computational modeling on blend morphology of silicon nanowires (SiNWs) dispersed in a conjugated polymer poly(3-hexylthiophene) P3HT hybrid solar...  相似文献   
86.
Membrane distillation (MD) is a thermal-based separation technique with the potential to treat a wide range of water types for various applications and industries. Certain challenges remain however, which prevent it from becoming commercially widespread including moderate permeate flux, decline in separation performance over time due to pore wetting and high thermal energy requirements. Nevertheless, its attractive characteristics such as high rejection (ca. 100%) of non-volatile species, its ability to treat highly saline solutions under low operating pressures (typically atmospheric) as well as its ability to operate at low temperatures, enabling waste-heat integration, continue to drive research interests globally. Of particular interest is the class of carbon-based nanomaterials which includes graphene and carbon nanotubes, whose wide range of properties have been exploited in an attempt to overcome the technical challenges that MD faces. These low dimensional materials exhibit properties such as high specific surface area, high strength, tuneable hydrophobicity, enhanced vapour transport, high thermal and electrical conductivity and others. Their use in MD has resulted in improved membrane performance characteristics like increased permeability and reduced fouling propensity. They have also enabled novel membrane capabilities such as in-situ fouling detection and localised heat generation. In this review we provide a brief introduction to MD and describe key membrane characteristics and fabrication methods. We then give an account of the various uses of carbon nanomaterials for MD applications, focussing on polymeric membrane systems. Future research directions based on the findings are also suggested.  相似文献   
87.

A gate-all-around charge plasma nanowire field-effect transistor (GAA CP NW FET) device using the negative-capacitance technique is introduced, termed the GAA CP NW negative-capacitance (NC) FET. In the face of bottleneck issues in nanoscale devices such as rising power dissipation, new techniques must be introduced into FET structures to overcome their major limitations. Negative capacitance is an efficient effect that can be incorporated into a device to enhance its performance for low-power applications and help to reduce the operating voltage. The Landau–Khalatnikov equation can be applied in such cases to obtain the effective bias. To determine the effects of negative capacitance, lead zirconate titanate (PZT) ferroelectric material, a ceramic material with perovskite properties, is adopted as a gate insulator. This approach diminishes the supply voltage and reduces the power dissipation in the device. Excluding their polarization properties, ferroelectric materials are similar to dielectric materials, and PZT offers abundant polarization with improved reliability and a higher dielectric capacitance. Without proper tuning of the thickness of the PZT material, hysteresis behavior mat occur. Hence, the thickness of the PZT material (tFE) is an essential parameter to optimize the device performance and achieve a reduced threshold voltage for the GAA CP NW NC-FET device proposed herein. Furthermore, varying the thickness of the PZT ferroelectric material can also enhance the performance. When using the highest values of tFE, improved outcomes with an analogously lower operating voltage are observed. The effects of varying tFE on the performance characteristics of the device including the drain current, transconductance, polarized charge, etc. are also interpreted herein.

  相似文献   
88.
The discovery of eco-friendly, rapid, and cost-effective compounds to control diseases caused by microbes and insects are the main challenges. Herein, the magnesium oxide nanoparticles (MgO-NPs) are successfully fabricated by harnessing the metabolites secreted by Penicillium chrysogenum. The fabricated MgO-NPs were characterized using UV-Vis, XRD, TEM, DLS, EDX, FT-IR, and XPS analyses. Data showed the successful formation of crystallographic, spherical, well-dispersed MgO-NPs with sizes of 7–40 nm at a maximum wavelength of 250 nm. The EDX analysis confirms the presence of Mg and O ions as the main components with weight percentages of 13.62% and 7.76%, respectively. The activity of MgO-NPs as an antimicrobial agent was investigated against pathogens Staphylococcus aureus, Bacillus subtilis, Pseudomonas aeruginosa, Escherichia coli, and Candida albicans, and exhibited zone of inhibitions of 12.0 ± 0.0, 12.7 ± 0.9, 23.3 ± 0.8, 17.7 ± 1.6, and 14.7 ± 0.6 mm respectively, at 200 µg mL−1. The activity is decreased by decreasing the MgO-NPs concentration. The biogenic MgO-NPs exhibit high efficacy against different larvae instar and pupa of Anopheles stephensi, with LC50 values of 12.5–15.5 ppm for I–IV larvae instar and 16.5 ppm for the pupa. Additionally, 5 mg/cm2 of MgO-NPs showed the highest protection percentages against adults of Anopheles stephensi, with values of 100% for 150 min and 67.6% ± 1.4% for 210 min.  相似文献   
89.
Disruption of retinal pigment epithelial (RPE barrier integrity is a hallmark feature of various retinal blinding diseases, including diabetic macular edema and age-related macular degeneration, but the underlying causes and pathophysiology are not completely well-defined. One of the most conserved phenomena in biology is the progressive decline in mitochondrial function with aging leading to cytopathic hypoxia, where cells are unable to use oxygen for energy production. Therefore, this study aimed to thoroughly investigate the role of cytopathic hypoxia in compromising the barrier functionality of RPE cells. We used Electric Cell-Substrate Impedance Sensing (ECIS) system to monitor precisely in real time the barrier integrity of RPE cell line (ARPE-19) after treatment with various concentrations of cytopathic hypoxia-inducing agent, Cobalt(II) chloride (CoCl2). We further investigated how the resistance across ARPE-19 cells changes across three separate parameters: Rb (the electrical resistance between ARPE-19 cells), α (the resistance between the ARPE-19 and its substrate), and Cm (the capacitance of the ARPE-19 cell membrane). The viability of the ARPE-19 cells and mitochondrial bioenergetics were quantified with 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay and seahorse technology, respectively. ECIS measurement showed that CoCl2 reduced the total impedance of ARPE-19 cells in a dose dependent manner across all tested frequencies. Specifically, the ECIS program’s modelling demonstrated that CoCl2 affected Rb as it begins to drastically decrease earlier than α or Cm, although ARPE-19 cells’ viability was not compromised. Using seahorse technology, all three concentrations of CoCl2 significantly impaired basal, maximal, and ATP-linked respirations of ARPE-19 cells but did not affect proton leak and non-mitochondrial bioenergetic. Concordantly, the expression of a major paracellular tight junction protein (ZO-1) was reduced significantly with CoCl2-treatment in a dose-dependent manner. Our data demonstrate that the ARPE-19 cells have distinct dielectric properties in response to cytopathic hypoxia in which disruption of barrier integrity between ARPE-19 cells precedes any changes in cells’ viability, cell-substrate contacts, and cell membrane permeability. Such differences can be used in screening of selective agents that improve the assembly of RPE tight junction without compromising other RPE barrier parameters.  相似文献   
90.
Cucurbitaceae family seeds are mostly discarded as agro-industrial wastes. Gurum (Citrullus lanatus var. colocynthoide) is an underutilized wild cucurbit plant, closely related to desert watermelon, which is grown abundantly in some African countries. Gurum seeds can play a significant role in health and nutrition due to their high oil content. This review describes the nutritional composition of gurum seeds and their oil profile. Gurum seeds are a good source of oil (27–35.5%), fiber (26–31%), crude protein (15–18%), and carbohydrates (14–17%). Gurum seeds oil is extracted by supercritical CO2 (SFE), screw press, and solvent extraction techniques. The gurum seeds oil is composed of unsaturated fatty acids with a high proportion of linoleic acid (C18:2) and oleic acid (C18:1). Gurum seeds oil contains various bioactive compounds, such as tocopherols, phytosterols, and polyphenols. It is reported that solvent extraction gives a higher yield than the screw press and SFE, but the SFE is preferred due to safety issues. More studies are required for producing better quality gurum seeds oil by using novel extraction techniques that can increase oil yield.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号