首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   165篇
  免费   18篇
化学工业   58篇
金属工艺   4篇
机械仪表   4篇
建筑科学   4篇
能源动力   8篇
轻工业   4篇
石油天然气   1篇
无线电   28篇
一般工业技术   44篇
冶金工业   1篇
自动化技术   27篇
  2023年   3篇
  2022年   2篇
  2021年   11篇
  2020年   10篇
  2019年   12篇
  2018年   5篇
  2017年   6篇
  2016年   11篇
  2015年   9篇
  2014年   8篇
  2013年   4篇
  2012年   15篇
  2011年   12篇
  2010年   17篇
  2009年   10篇
  2008年   9篇
  2007年   9篇
  2006年   3篇
  2005年   2篇
  2004年   6篇
  2003年   1篇
  2002年   3篇
  2001年   1篇
  2000年   2篇
  1999年   4篇
  1996年   2篇
  1995年   2篇
  1989年   1篇
  1985年   1篇
  1977年   1篇
  1975年   1篇
排序方式: 共有183条查询结果,搜索用时 15 毫秒
31.
Multi-wall carbon nanotubes are grown in a chemical vapor deposition process by using bulk gold and copper substrates as catalysts. Nanotube growth starts from a nanometer-sized roughness on the metal surfaces and occurs in a mechanism where the catalyst particle is either at the tip (Au) or root (Cu) of the growing nanotube. Whereas Au leads to nanotubes with good structural perfection, nanotubes grown from Cu show a higher density of defects. High-resolution transmission electron microscopy shows the bonding between Au and carbon at the metal-nanotube interface whereas no bonds between Cu and carbon occur. Highly mobile Au or Cu atoms adsorb at the growing edge of a carbon nanotube from where diffusion along the nanotube wall can lead to the formation of Au or Cu nanowires inside the central hollow of carbon nanotubes.  相似文献   
32.
The use of porous structures with high external surface area represents an important breakthrough in several industrial applications. Foam structures have received an increasing scientific and industrial interest since the last decade. Knowledge of pressure drop induced by these foam structures is thus essential for successful design and operation of high performance industrial systems. In this context, an analytical investigation was conducted for the determination of the permeability and the inertial coefficient in foams. The theoretical model is based on modified cubic lattice, which allows to take into account the presence of matter at the junction of struts. The existing model developed in the literature is then modified to incorporate this geometrical approach for determining the tortuosity of the foam. Finally, the permeability and inertial coefficient analysis are performed in order to derive the pressure drop on foams. The modeling procedure is based only on physical principles and geometrical considerations with no adjustable parameters in order to reconcile the theoretical work with the experimental data of the literature. Finally, this model is validated for two marginal cases (i.e. ‘slim’ and ‘fat’ foams).  相似文献   
33.
The nucleation and growth of single‐walled carbon nanotubes is observed in situ in a transmission electron microscope. Carbon atoms are implanted into catalytically active metal particles by electron‐beam sputtering. The metal particles are then shaped with a focused electron beam. Once the particles have a region of high surface curvature, spontaneous nucleation and growth of single‐walled carbon nanotubes occurs on the metal particles. It is shown that the local solubility of carbon in the metal determines the nucleation of nanotubes. This is confirmed by atomistic computer simulations treating the solubility of carbon in a metal particle as a function of the size of the system.  相似文献   
34.
Whispering gallery mode (WGM) resonators are shown to hold great promise to achieve high‐performance lasing using colloidal semiconductor nanocrystals (NCs) in solution phase. However, the low packing density of such colloidal gain media in the solution phase results in increased lasing thresholds and poor lasing stability in these WGM lasers. To address these issues, here optical gain in colloidal quantum wells (CQWs) is proposed and shown in the form of high‐density close‐packed solid films constructed around a coreless fiber incorporating the resulting whispering gallery modes to induce gain and waveguiding modes of the fiber to funnel and collect light. In this work, a practical method is presented to produce the first CQW‐WGM laser using an optical fiber as the WGM cavity platform operating at low thresholds of ≈188 µJ cm?2 and ≈1.39 mJ cm?2 under one‐ and two‐photon absorption pumped, respectively, accompanied with a record low waveguide loss coefficient of ≈7 cm?1 and a high net modal gain coefficient of ≈485 cm?1. The spectral characteristics of the proposed CQW‐WGM resonator are supported with a numerical model of full electromagnetic solution. This unique CQW‐WGM cavity architecture offers new opportunities to achieve simple high‐performance optical resonators for colloidal lasers.  相似文献   
35.
Increasing computational power and the availability of 3D printers provide new tools for the combination of modeling and experimentation. Several simulation tools can be run independently and in parallel, e.g., long running computational fluid dynamics simulations can be accompanied by experiments with 3D printers. Furthermore, results from analytical and data-driven models can be incorporated. However, there are fundamental differences between these modeling approaches: some models, e.g., analytical models, use domain knowledge, whereas data-driven models do not require any information about the underlying processes. At the same time, data-driven models require input and output data, but analytical models do not. The optimization via multimodel simulation (OMMS) approach, which is able to combine results from these different models, is introduced in this paper. We believe that OMMS improves the robustness of the optimization, accelerates the optimization-via-simulation process, and provides a unified approach. Using cyclonic dust separators as a real-world simulation problem, the feasibility of this approach is demonstrated and a proof-of-concept is presented. Cyclones are popular devices used to filter dust from the emitted flue gasses. They are applied as pre-filters in many industrial processes including energy production and grain processing facilities. Pros and cons of this multimodel optimization approach are discussed and experiences from experiments are presented.  相似文献   
36.
This study aims at synthesizing a new by substituting 1 atom% Pd2+ in ionic state in TiO2 in the form of Ti0.99Pd0.01O1.99 with oxide-ion vacancy. The catalyst was synthesized by solution combustion method and was characterized by XRD and XPS. The catalytic activity was investigated by performing CO oxidation, hydrocarbon oxidation and NO reduction. A reaction mechanism for CO oxidation by O2 and NO reduction by CO was proposed. The model based on CO adsorption on Pd2+ and dissociative chemisorption of O2 in the oxide-ion vacancy for CO oxidation reaction fitted the experimental for CO oxidation. For NO reduction in presence of CO, the model based on competitive adsorption of NO and CO on Pd2+, NO chemisorption and dissociation on oxide-ion vacancy fitted the experimental data. The rate parameters obtained from the model indicated that the reactions were much faster over this catalyst compared to other catalysts reported in the literature. The selectivity of N2, defined as the ratio of the formation of N2 and formation of N2 and N2O, was very high compared to other catalysts and 100% selectivity was reached at temperature of 350 °C and above. As the N2O + CO reaction is an intermediate reaction for NO + CO reaction, it was also studied as an isolated reaction and the rate of the isolated reaction was less than that of intermediate reaction.  相似文献   
37.
We propose a hybridizable discontinuous Galerkin (HDG) method to numerically solve the Oseen equations which can be seen as the linearized version of the incompressible Navier-Stokes equations. We use same polynomial degree to approximate the velocity, its gradient and the pressure. With a special projection and postprocessing, we obtain optimal convergence for the velocity gradient and pressure and superconvergence for the velocity. Numerical results supporting our theoretical results are provided.  相似文献   
38.
A nonlinear MIMO controller based on the conditional integrator technique is designed for the robust stabilization of a new satellite launching strategy called (unmanned) airlaunch. This control technique concerns an integrator performing similar to a sliding mode controller when the system is outside a boundary layer defined by the controller, and performing as a linear controler that provides the integral term when the system enters into the boundary layer. Satellite airlaunch strategy consists in using a two‐stage launching system. The first stage is composed of an airplane (manned or unmanned) that carries a rocket launcher, which constitute the subsequent stages. The control objective is to stabilize the aircraft in the launch phase. It is developed separately for the two nonlinear (one MIMO and one SISO) motion modes of the model, the longitudinal mode and lateral mode, and is then applied to the full model of the aircraft. The considered system is highly nonlinear, mostly as a consequence of a possible large angle of attack, sideslip, and roll angle. Finally, the present work illustrates through simulations, the good performance of the proposed control algorithm. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
39.
40.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号