首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   406篇
  免费   33篇
  国内免费   1篇
电工技术   8篇
综合类   3篇
化学工业   124篇
金属工艺   8篇
机械仪表   4篇
建筑科学   13篇
矿业工程   1篇
能源动力   40篇
轻工业   44篇
水利工程   2篇
石油天然气   2篇
无线电   34篇
一般工业技术   62篇
冶金工业   40篇
原子能技术   7篇
自动化技术   48篇
  2024年   1篇
  2023年   4篇
  2022年   15篇
  2021年   49篇
  2020年   13篇
  2019年   15篇
  2018年   16篇
  2017年   21篇
  2016年   19篇
  2015年   15篇
  2014年   18篇
  2013年   37篇
  2012年   28篇
  2011年   26篇
  2010年   20篇
  2009年   16篇
  2008年   15篇
  2007年   14篇
  2006年   10篇
  2005年   9篇
  2004年   7篇
  2003年   8篇
  2002年   7篇
  2001年   3篇
  2000年   4篇
  1999年   1篇
  1998年   5篇
  1996年   2篇
  1995年   4篇
  1994年   3篇
  1993年   4篇
  1992年   4篇
  1991年   1篇
  1990年   1篇
  1989年   1篇
  1988年   1篇
  1987年   1篇
  1986年   1篇
  1985年   4篇
  1984年   1篇
  1981年   2篇
  1978年   3篇
  1977年   1篇
  1974年   2篇
  1973年   4篇
  1971年   2篇
  1970年   1篇
  1967年   1篇
排序方式: 共有440条查询结果,搜索用时 125 毫秒
51.
Carbon monoxide (CO)—gaseous or released by CO-RMs—both possess antiplatelet properties; however, it remains uncertain whether the mechanisms involved are the same. Here, we characterise the involvement of soluble guanylate cyclase (sGC) in the effects of CO—delivered by gaseous CO–saturated buffer (COG) and generated by CORM-A1—on platelet aggregation and energy metabolism, as well as on vasodilatation in aorta, using light transmission aggregometry, Seahorse XFe technique, and wire myography, respectively. ODQ completely prevented the inhibitory effect of COG on platelet aggregation, but did not modify antiplatelet effect of CORM-A1. In turn, COG did not affect, whereas CORM-A1 substantially inhibited energy metabolism in platelets. Even though activation of sGC by BAY 41-2272 or BAY 58-2667 inhibited significantly platelet aggregation, their effects on energy metabolism in platelets were absent or weak and could not contribute to antiplatelet effects of sGC activation. In contrast, vasodilatation of murine aortic rings, induced either by COG or CORM-A1, was dependent on sGC. We conclude that the source (COG vs. CORM-A1) and kinetics (rapid vs. slow) of CO delivery represent key determinants of the mechanism of antiplatelet action of CO, involving either impairment of energy metabolism or activation of sGG.  相似文献   
52.
Metallurgical and Materials Transactions A - This paper describes the development and characterisation of bainitic steel for rail applications based on carbide-free, low-alloy steel. The results...  相似文献   
53.
Nowadays, doped graphenes are attracting much interest in the field of Li‐ion batteries since it shows higher specific capacity than widely used graphite. However, synthesis methods of doped graphenes have secondary processes that requires much energy. In this study, in situ synthesis of N‐doped graphene powders by using of cyclic voltammetric method from starting a graphite rod in nitric acid solution has been discussed for the first time in the literature. The N‐including functional groups such as nitro groups, pyrrolic N, and pyridinic N have been selectively prepared as changing scanned potential ranges in cyclic voltammetry. The electrochemical performance as anode material in Li‐ion batteries has also been covered within this study. N‐doped graphene powders have been characterized by electrochemical, spectroscopic, and microscopic methods. According to the X‐ray photoelectron spectroscopy and Raman results, N‐doped graphene powders have approximately 16 to 18 graphene rings in their main structure. The electrochemical analysis of graphene powders synthesized at different potential ranges showed that the highest capacity was obtained 438 mAh/g after 10 cycles by using current density of 50 mA/g at N‐GP4. Furthermore, the sample having higher defect size shows better specific capacity. However, the more stable structure due to oxygen content and less defect size improves the rate capabilities, and thus, the results obtained at high current density indicated that the remaining capacity of N‐GP1 was higher than the others.  相似文献   
54.
Excessive UV exposure contributes to several pathological conditions like skin burns, erythema, premature skin aging, photodermatoses, immunosuppression, and skin carcinogenesis. Effective protection from UV radiation may be achieved with the use of sunscreens containing UV filters. Currently used UV filters are characterized by some limitations including systemic absorption, endocrine disruption, skin allergy induction, and cytotoxicity. In the research centers all over the world new molecules are developed to improve the safety, photostability, solubility, and absorption profile of new derivatives. In our study, we designed and synthesized seventeen novel molecules by combining in the structures two chromophores: xanthone and (E)-cinnamoyl moiety. The ultraviolet spectroscopic properties of the tested compounds were confirmed in chloroform solutions. They acted as UVB or UVA/UVB absorbers. The most promising compound 9 (6-methoxy-9-oxo-9H-xanthen-2-yl)methyl (E)-3-(2,4-dimethoxyphenyl)acrylate) absorbed UV radiation in the range 290–369 nm. Its photoprotective activity and functional photostability were further evaluated after wet milling and incorporation in the cream base. This tested formulation with compound 9 possessed very beneficial UV protection parameters (SPFin vitro of 19.69 ± 0.46 and UVA PF of 12.64 ± 0.32) which were similar as broad-spectrum UV filter tris-biphenyl triazine. Additionally, compound 9 was characterized by high values of critical wavelength (381 nm) and UVA/UVB ratio (0.830) thus it was a good candidate for broad-spectrum UV filter and it might protect skin against UVA-induced photoaging. Compound 9 were also shown to be photostable, non-cytotoxic at concentrations up to 50 µM when tested on five cell lines, and non-mutagenic in Ames test. It also possessed no estrogenic activity, according to the results of MCF-7 breast cancer model. Additionally, its favorable lipophilicity (miLogP = 5.62) does not predispose it to penetrate across the skin after topical application.  相似文献   
55.
Sparse matrix computations are among the most important computational patterns, commonly used in geometry processing, physical simulation, graph algorithms, and other situations where sparse data arises. In many cases, the structure of a sparse matrix is known a priori, but the values may change or depend on inputs to the algorithm. We propose a new methodology for compile-time specialization of algorithms relying on mixing sparse and dense linear algebra operations, using an extension to the widely-used open source Eigen package. In contrast to library approaches optimizing individual building blocks of a computation (such as sparse matrix product), we generate reusable sparsity-specific implementations for a given algorithm, utilizing vector intrinsics and reducing unnecessary scanning through matrix structures. We demonstrate the effectiveness of our technique on a benchmark of artificial expressions to quantitatively evaluate the benefit of our approach over the state-of-the-art library Intel MKL. To further demonstrate the practical applicability of our technique we show that our technique can improve performance, with minimal code changes, for mesh smoothing, mesh parametrization, volumetric deformation, optical flow, and computation of the Laplace operator.  相似文献   
56.
57.
The main drawbacks of today's state-of-the-art lithium–air (Li–air) batteries are their low energy efficiency and limited cycle life due to the lack of earth-abundant cathode catalysts that can drive both oxygen reduction and evolution reactions (ORR and OER) at high rates at thermodynamic potentials. Here, inexpensive trimolybdenum phosphide (Mo3P) nanoparticles with an exceptional activity—ORR and OER current densities of 7.21 and 6.85 mA cm−2 at 2.0 and 4.2 V versus Li/Li+, respectively—in an oxygen-saturated non-aqueous electrolyte are reported. The Tafel plots indicate remarkably low charge transfer resistance—Tafel slopes of 35 and 38 mV dec−1 for ORR and OER, respectively—resulting in the lowest ORR overpotential of 4.0 mV and OER overpotential of 5.1 mV reported to date. Using this catalyst, a Li–air battery cell with low discharge and charge overpotentials of 80 and 270 mV, respectively, and high energy efficiency of 90.2% in the first cycle is demonstrated. A long cycle life of 1200 is also achieved for this cell. Density functional theory calculations of ORR and OER on Mo3P (110) reveal that an oxide overlayer formed on the surface gives rise to the observed high ORR and OER electrocatalytic activity and small discharge/charge overpotentials.  相似文献   
58.
The effect of radiation on photochromic crosslinked polymers containing azo group side chains is investigated. After irradiation at constant sample length, the swollen gels of light-sensitive polymers exhibit a reversible increase in the elastic retractive force. The light induced conformational changes are also accompanied by changes in the swelling equilibrium and temperature of the sample due to absorption of radiation and this added complication to the interpretation of the data. Interactions of the polymer with the solvent and the heat effect were eliminated by determining the temperature dependences of the elastic retractive force for the irradiated and unirradiated rubbery dry networks. The photomechanical effect increased with an increase in the content of photochromic groups and for the polymer with 5.4 mol % of azo groups, the photoinduced contraction of the sample amounted to 1%.  相似文献   
59.
60.
The present study describes the preparation and characterization of a novel nanocomposite, based on montmorillonite clay (MMT) encapsulation in poly(ethylene glycol) (PEG) by an electrospraying process. PEG/MMT nanocomposites with MMT contents ranging from 1 to 5 wt % were successfully prepared and characterized in relation to their morphological, spectroscopic, structural, and thermal properties. Scanning electron microscopy, transmission electron microscopy, and atomic force microscopy micrographs showed that the PEG nanobeads formed spherical shapes, and with increasing amount of MMT clay, the size of the beads decreased significantly, ranging from 120 to 3.7 nm. The Fourier transform infrared spectroscopy results suggested that there was no significant chemical interaction between PEG and MMT clay. However, the d‐spacing of MMT clay in PEG/MMT increased, a clear indication of the intercalation of PEG in the interlayer spaces of MMT clay. Furthermore, the thermal stability of PEG polymer decreased upon encapsulation of MMT clay in PEG/MMT composites. Nanoindentation results showed that the hardness and Young's modulus of the PEG/MMT composites increased with 3 wt % loading of MMT. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45048.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号