首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   111篇
  免费   2篇
化学工业   14篇
金属工艺   2篇
机械仪表   9篇
建筑科学   3篇
能源动力   4篇
轻工业   19篇
无线电   11篇
一般工业技术   23篇
冶金工业   7篇
自动化技术   21篇
  2023年   2篇
  2022年   3篇
  2021年   8篇
  2020年   5篇
  2019年   9篇
  2018年   5篇
  2017年   4篇
  2016年   9篇
  2015年   7篇
  2014年   13篇
  2013年   9篇
  2012年   5篇
  2011年   6篇
  2010年   2篇
  2009年   5篇
  2008年   5篇
  2007年   4篇
  2006年   3篇
  2005年   1篇
  2004年   1篇
  2002年   1篇
  1997年   2篇
  1995年   1篇
  1994年   1篇
  1983年   2篇
排序方式: 共有113条查询结果,搜索用时 15 毫秒
11.
12.
Kaur  Navneet  Jindal  Neeru  Singh  Kulbir 《Multimedia Tools and Applications》2020,79(43-44):32037-32063
Multimedia Tools and Applications - With the technology progress, a plethora of freely accessible software has questioned the authenticity of digital images. This field is continuously creating...  相似文献   
13.
This work reports the composition dependent microstructure, dielectric, ferroelectric and energy storage properties, and the phase transitions sequence of lead free xBa(Zr0.2Ti0.8)O3-(1-x)(Ba0.7Ca0.3)TiO3 [xBZT-(1-x)BCT] ceramics, with x?=?0.4, 0.5 and 0.6, prepared by solid state reaction method. The XRD and Raman scattering results confirm the coexistence of rhombohedral and tetragonal phases at room temperature (RT). The temperature dependence of Raman scattering spectra, dielectric permittivity and polarization points a first phase transition from ferroelectric rhombohedral phase to ferroelectric tetragonal phase at a temperature (TR-T) of 40?°C and a second phase transition from ferroelectric tetragonal phase - paraelectric pseudocubic phase at a temperature (TT-C) of 110?°C. The dielectric analysis suggests that the phase transition at TT-C is of diffusive type and the BZT-BCT ceramics are a relaxor type ferroelectric materials. The composition induced variation in the temperature dependence of dielectric losses was correlated with full width half maxima (FWHM) of A1, E(LO) Raman mode. The saturation polarization (Ps) ≈8.3?μC/cm2 and coercive fields ≈2.9?kV/cm were found to be optimum at composition x?=?0.6 and is attributed to grain size effect. It is also shown that BZT-BCT ceramics exhibit a fatigue free response up to 105 cycles. The effect of a.c. electric field amplitude and temperature on energy storage density and storage efficiency is also discussed. The presence of high TT-C (110?°C), a high dielectric constant (εr ≈?12,285) with low dielectric loss (0.03), good polarization (Ps ≈?8.3?μC/cm2) and large recoverable energy density (W?=?121?mJ/cm3) with an energy storage efficiency (η) of 70% at an electric field of 25?kV/cm in 0.6BZT-0.4BCT ceramics make them suitable candidates for energy storage capacitor applications.  相似文献   
14.
15.
In this article, a novel omnidirectional compact dual band metamaterial‐inspired antenna with CPW feed has been proposed for application of GSM 1800 (1.71‐1.785 GHz/1.805‐1.879 GHz), GSM 1900 (1.85‐1.91 GHz/1.93‐1.99 GHz), UMTS (1.92‐2.17 GHz), WLAN/Wi Fi (4.9, 5, 5.9 GHz), HiperLAN1 (5.15‐5.3 GHz), and HiperLAN2 (5.47‐5.72 GHz) using a combination of meander line inductor and interdigital capacitor (IDC). The antenna consists of complimentary right/left handed (CRLH) transmission line on both sides of patch to excite zeroth order mode (n = 0). The rectangular slotted stubs act as a virtual ground for the structure using a short circuit condition at the end of the IDC. The zeroth order resonance (ZOR) frequency is mainly controlled by IDC and partially with the meander line inductor. The designed antenna operates from 1.72 to 2.22 GHz and 4.25 to 5.88 GHz with radiating size of 0.56λo × 0.35λo (32 × 20 mm2), where λo is the free‐space wavelength at ZOR frequency of 5.27 GHz. The proposed antenna offers measured impedance bandwidth (|S11| <?10 dB) of 25.3 and 18.7% at 1.95 and 5.28 GHz and covers the targeted frequency bands. The proposed structure offers omnidirectional radiation patterns are congruous throughout the working band.  相似文献   
16.
Silver–poly(methyl methacrylate) (Ag–PMMA) nanocomposite films were prepared via ex situ chemical route by employing sodium borohydride (\(\hbox {NaBH}_{4}\)) as a reducing agent. In this study, PVP-stabilized Ag nanoparticles were prepared and mixed with PMMA solution. Optical and structural characterizations of resulting nanocomposite films were performed using UV–visible spectroscopy, transmission electron microscopy (TEM) and scanning electron microscopy (SEM). Characteristic surface plasmon resonance (SPR) peak of Ag nanoparticles was observed at about 3.04 eV (408 nm) in absorption spectra of Ag–PMMA nanocomposite films. TEM micrograph revealed that the spherical Ag nanoparticles with an average diameter of 5.4\(\,\pm \,\)2.5 nm are embedded in PMMA. In Raman spectra, besides shifting of vibrational bands, enhancement in intensity of Raman signal with incorporation of Ag nanoparticles was observed. Current (I)–voltage (V) measurements revealed that conductivity of PMMA increased with increasing concentration of Ag nanoparticles. Analysis of IV data further disclosed that at voltage <2 V, ohmic conduction mechanism is the dominant mechanism, while at voltage >2 V Poole–Frenkel is the dominant conduction mechanism. Urbach’s energy, the measure of disorder, increased from 0.40 eV for PMMA to 1.11 eV for Ag–PMMA nanocomposite films containing 0.039 wt% of Ag nanoparticles.  相似文献   
17.
The number of security failure discovered and disclosed publicly are increasing at a pace like never before. Wherein, a small fraction of vulnerabilities encountered in the operational phase are exploited in the wild. It is difficult to find vulnerabilities during the early stages of software development cycle, as security aspects are often not known adequately. To counter these security implications, firms usually provide patches such that these security flaws are not exploited. It is a daunting task for a security manager to prioritize patches for vulnerabilities that are likely to be exploitable. This paper fills this gap by applying different machine learning techniques to classify the vulnerabilities based on previous exploit-history. Our work indicates that various vulnerability characteristics such as severity, type of vulnerabilities, different software configurations, and vulnerability scoring parameters are important features to be considered in judging an exploit. Using such methods, it is possible to predict exploit-prone vulnerabilities with an accuracy >85%. Finally, with this experiment, we conclude that supervised machine learning approach can be a useful technique in predicting exploit-prone vulnerabilities.  相似文献   
18.
A novel zeroth‐order resonator (ZOR) meta‐material (MTM) antenna with dual‐band is suggested using compound right/left handed transmission line as MTM. In this article, suggested antenna consists of patch through series gap, two meander line inductors, and two circular stubs. The MTM antenna is compact in size which shows dual‐band properties with first band centered at 2.47 GHz (2.05‐2.89 GHz) and second band is centered at 5.9 GHz (3.70‐8.10 GHz) with impedance bandwidth of (S11 < ? 10 dB) 34.69% and 72.45%, respectively. At ZOR mode (2.35 GHz), the suggested antenna has overall dimension of 0.197λo × 0.07λo × 0.011λo with gain of 1.65 dB for ZOR band and 3.35 dB for first positive order resonator band which covers the applications like Bluetooth (2.4 GHZ), TV/Radio/Data (3.700‐6.425 GHz), WLAN (5‐5.16 GHz), C band frequencies (5.15‐5.35, 5.47‐5.725, or 5.725‐5.875 GHz) and satellite communication (7.25‐7.9 GHz). The radiation patterns of suggested structure are steady during the operating band for which sample antenna has been fabricated and confirmed experimentally. It exhibits novel omnidirectional radiation characteristics in phi = 0° plane with lower cross‐polarization values.  相似文献   
19.
We present efficient labelling of several proteins with orange‐emissive carbon dots. N‐Hydroxysuccinimide was used to activate the carboxyl groups of carbon dots, which subsequently reacted with the lysine groups present on the protein. Labelling was confirmed by UV absorption spectroscopy, PAGE and fluorescence correlation spectroscopy. Protein‐conjugated carbon dots showed an enhancement in fluorescence lifetime and intensity owing to reduced intramolecular dynamic fluctuations. Single‐molecule fluorescence measurements showed reduced fluorescence fluctuations and higher photon budget after protein tagging. Our study opens up opportunities to use carbon dots as highly precise biolabelling probes.  相似文献   
20.
Heat source models are mathematical expressions that represent the generation term in the fundamental heat transfer equation. Investigators have successfully demonstrated different heat source models for single-wire welding. The present investigation estimates the double ellipsoidal heat source model parameters for twin-wire application. The heat source model parameters have been estimated for varying set of welding conditions. It has been found that the heat source model parameters for twin-wire welding are different from the single-wire welding. Moreover, the heat source model parameters also depend upon process parameters. Effects of welding current, electrode polarity and wire diameter on the size of heat source model have been presented. Flux consumption is also found to play a significant role in deciding the heat source model parameters.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号