首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   44725篇
  免费   14998篇
  国内免费   16篇
电工技术   835篇
综合类   16篇
化学工业   18702篇
金属工艺   665篇
机械仪表   1181篇
建筑科学   1783篇
矿业工程   4篇
能源动力   1174篇
轻工业   7765篇
水利工程   314篇
石油天然气   51篇
武器工业   1篇
无线电   7925篇
一般工业技术   12997篇
冶金工业   1134篇
原子能技术   91篇
自动化技术   5101篇
  2024年   7篇
  2023年   131篇
  2022年   79篇
  2021年   539篇
  2020年   1620篇
  2019年   3311篇
  2018年   3310篇
  2017年   3649篇
  2016年   4142篇
  2015年   4147篇
  2014年   4189篇
  2013年   5426篇
  2012年   3256篇
  2011年   3112篇
  2010年   3116篇
  2009年   2973篇
  2008年   2448篇
  2007年   2220篇
  2006年   1931篇
  2005年   1594篇
  2004年   1560篇
  2003年   1502篇
  2002年   1398篇
  2001年   1218篇
  2000年   1194篇
  1999年   574篇
  1998年   269篇
  1997年   164篇
  1996年   124篇
  1995年   71篇
  1994年   79篇
  1993年   56篇
  1992年   45篇
  1991年   33篇
  1990年   31篇
  1989年   26篇
  1988年   17篇
  1987年   14篇
  1986年   25篇
  1985年   13篇
  1984年   16篇
  1983年   12篇
  1981年   7篇
  1980年   8篇
  1979年   7篇
  1977年   7篇
  1976年   12篇
  1974年   6篇
  1971年   6篇
  1970年   6篇
排序方式: 共有10000条查询结果,搜索用时 554 毫秒
71.
A series of random polyesteramides (PEAs) with a range of molar composition from 90/10 to 50/50 were synthesized by direct melt polycondensation of ε‐caprolactone and l ‐alanine. Their structure was fully characterized by Fourier transform IR and NMR spectroscopy. The resulting copolymers are completely amorphous with the exception of PEA‐90/10 which possesses a semicrystalline structure. These PEAs present increasing glass transition temperatures at increasing l ‐alanine contents and exhibit fairly good thermal stability with 10% mass loss temperatures reaching 315 °C. © 2020 Society of Industrial Chemistry  相似文献   
72.
73.
In this study, solvent‐free nanofibrous electrolytes were fabricated through an electrospinning method. Polyethylene oxide (PEO), lithium perchlorate and ethylene carbonate were used as polymer matrix, salt and plasticizer respectively in the electrolyte structures. Keggin‐type hetero polyoxometalate (Cu‐POM@Ru‐rGO, Ni‐POM@Ru‐rGO and Co‐POM@Ru‐rGO (POM, polyoxometalate; rGO, reduced graphene oxide)) nanoparticles were synthesized and inserted into the PEO‐based nanofibrous electrolytes. TEM and SEM analyses were carried out for further evaluation of the synthesized filler structures and the electrospun nanofibre morphologies. The fractions of free ions and crystalline phases of the as‐spun electrolytes were estimated by obtaining Fourier transform infrared and XRD spectra, respectively. The results showed a significant improvement in the ionic conductivity of the nanofibrous electrolytes by increasing filler concentrations. The highest ionic conductivity of 0.28 mS cm?1 was obtained by the introduction of 0.49 wt% Co‐POM@Ru‐rGO into the electrospun electrolyte at ambient temperature. Compared with solution‐cast polymeric electrolytes, the electrospun electrolytes present superior ionic conductivity. Moreover, the cycle stability of the as‐spun electrolytes was clearly improved by the addition of fillers. Furthermore, the mechanical strength was enhanced with the insertion of 0.07 wt% fillers to the electrospun electrolytes. The results implied that the prepared nanofibres are good candidates as solvent‐free electrolytes for lithium ion batteries. © 2020 Society of Chemical Industry  相似文献   
74.
This study assessed the collection efficiency (CE) of two popularly used sampling devices (BioSampler and Coriolis sampler) for fungal aerosols. Phosphate‐buffered saline (PBS) supplemented with or without surfactant (Tween‐20, Tween‐80, or Triton X‐100) and antifoam agent was prepared and used as collection liquids. The agar impactor (BioStage) was simultaneously operated with liquid‐based samplers to collect fungi from seven sites located at a university building, public library, and animal farming. Fungal concentrations determined by liquid samplers were divided by those by BioStage, and the ratio values represented CE. Results indicate that the CE of BioSampler was superior to that of Coriolis (P = 0.0001) and the PBS containing surfactant collected fungi better than that without surfactant (P < 0.0001), whereas antifoam agent showed no influence (P = 0.8). Moreover, fungal concentrations determined by BioSampler with surfactant‐added PBS were statistically indifferent from those by BioStage (P > 0.05) with a Spearman correlation coefficient of 0.81‐0.83 (P < 0.01). In addition to sampler and collection liquid, sampling location was also identified as a significant CE factor (P = 0.006), implying potential influences by fungal genera in the studied fields. Overall, BioSampler with surfactant‐supplemented PBS (eg, Triton X‐100) is recommended considering the great CE and compatibility with a variety of analytical assays.  相似文献   
75.
76.
Class I hydrophobin Vmh2, a peculiar surface active and versatile fungal protein, is known to self‐assemble into chemically stable amphiphilic films, to be able to change wettability of surfaces, and to strongly adsorb other proteins. Herein, a fast, highly homogeneous and efficient glass functionalization by spontaneous self‐assembling of Vmh2 at liquid–solid interfaces is achieved (in 2 min). The Vmh2‐coated glass slides are proven to immobilize not only proteins but also nanomaterials such as graphene oxide (GO) and quantum dots (QDs). As models, bovine serum albumin labeled with Alexa 555 fluorophore, anti‐immunoglobulin G antibodies, and cadmium telluride QDs are patterned in a microarray fashion in order to demonstrate functionality, reproducibility, and versatility of the proposed substrate. Additionally, a GO layer is effectively and homogeneously self‐assembled onto the studied functionalized surface. This approach offers a quick and simple alternative to immobilize nanomaterials and proteins, which is appealing for new bioanalytical and nanobioenabled applications.  相似文献   
77.
A facile sol–gel procedure has been developed for the synthesis of colloidal alumina nanocrystals. For the first time, optical characterization procedures were employed to study the quantum confinement effects in optical properties of the prepared Al2O3 sol. Accordingly, the hyperbolic band model was used to determine the optical band gap of colloidal alumina nanocrystals. X‐Ray diffraction pattern was used to study the crystallographic phase of the dried gel. Morphological characterization was performed using scanning electron microscopy (SEM). Inductively Coupled Plasma (ICP) emission spectroscopy was used to determination purity of the Al2O3 powder. High‐resolution TEM showed that the diameter of colloidal nanocrystals is about 10 nm. Photoluminescence spectroscopy demonstrated that quantum yields for colloidal nanocrystals are 68% with 300 nm excitation wavelength. The experimental observations confirm that highly stable alumina sol with strong UV emission was synthesized. The mentioned optical properties have not been reported before.  相似文献   
78.
79.
We present a distribution‐free tabular cumulative sum chart for monitoring the variability of an autocorrelated process. A quantity known as the asymptotic variance parameter is employed as a measure of the variability, and a distribution‐free tabular cumulative sum chart is applied to variance estimates calculated from batches of nonoverlapping samples. The proposed chart is applicable to a stationary process with a general marginal distribution and a general autocorrelation structure. It also determines control limits analytically without trial‐and‐error simulations. The performance of the proposed chart is tested on stationary processes with both normal and nonnormal marginals with various autocorrelation structures. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
80.
Poor strength, infection, leakage, long procedure times, and inflammation limit the efficacy of common tissue sealing devices in surgeries and trauma. Light-activated sealing is attractive for tissue sealing and repair, and can be facilitated by the generation of local heat following absorption of nonionizing laser energy by chromophores. Here, the inherent ability of biomaterials is exploited to absorb nonionizing, mid-infrared (midIR) light in order to engender rapid photothermal sealing and repair of soft tissue wounds. In this approach, the biomaterial simultaneously acts as a photothermal convertor as well as a biosealant, which dispenses the need for exogeneous light-absorbing nanoparticles or dyes. Biomechanical recovery, mathematical modeling, histopathology analyses, tissue strain mapping using digital imaging correlation, and visualization of the biosealant-tissue interface using hyperspectral imaging indicate superior performance of midIR sealing in live mice compared to conventional sutures and glue. The midIR-biosealant approach demonstrates rapid sealing of soft tissues, improves cosmesis, lowers potential for scarring, obviates safety concerns because of the nonionizing light used, and allows adoption of a wide diversity of biomaterials. Taken together, the studies demonstrate a novel advance both in biomaterials for surgical sealing along with the use of nonionizing midIR light, with high potential for clinical translation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号