首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   40163篇
  免费   14926篇
  国内免费   4篇
电工技术   750篇
综合类   5篇
化学工业   17821篇
金属工艺   369篇
机械仪表   801篇
建筑科学   1837篇
矿业工程   8篇
能源动力   943篇
轻工业   7436篇
水利工程   301篇
石油天然气   56篇
无线电   7012篇
一般工业技术   11898篇
冶金工业   665篇
原子能技术   45篇
自动化技术   5146篇
  2024年   7篇
  2023年   30篇
  2022年   79篇
  2021年   405篇
  2020年   1508篇
  2019年   3249篇
  2018年   3208篇
  2017年   3522篇
  2016年   4029篇
  2015年   4033篇
  2014年   3988篇
  2013年   5202篇
  2012年   2902篇
  2011年   2578篇
  2010年   2788篇
  2009年   2687篇
  2008年   2225篇
  2007年   2025篇
  2006年   1799篇
  2005年   1487篇
  2004年   1415篇
  2003年   1379篇
  2002年   1309篇
  2001年   1142篇
  2000年   1105篇
  1999年   495篇
  1998年   74篇
  1997年   66篇
  1996年   44篇
  1995年   45篇
  1994年   31篇
  1993年   31篇
  1992年   17篇
  1991年   24篇
  1990年   17篇
  1989年   12篇
  1988年   8篇
  1987年   12篇
  1986年   14篇
  1985年   11篇
  1984年   11篇
  1983年   8篇
  1982年   17篇
  1981年   12篇
  1980年   7篇
  1979年   8篇
  1978年   8篇
  1977年   5篇
  1976年   4篇
  1973年   3篇
排序方式: 共有10000条查询结果,搜索用时 174 毫秒
71.
Through the simple precipitation of palygorskite (PGS) by zinc borate (ZB) (to make PGS@ZB) and the decoration of PGS@ZB by dodecylamine (N), a novel organic‐inorganic@inorganic hybrid flame retardant of PGS@ZB‐N was prepared and was incorporated with ethylene vinyl acetate copolymer (EVA) to improve its flame retardance. The structure and morphology of PGS@ZB‐N were characterized by Fourier transform infrared (FTIR) spectroscopy, X‐ray diffraction (XRD), and scanning electron microscopy (SEM), and it was confirmed that the PGS@ZB‐N hybrid had been successfully prepared. The flame retardancy and burning behavior of EVA/PGS@ZB‐N/EG (EG = expandable graphite) composite were studied through thermogravimetric analysis (TGA), limiting oxygen index (LOI), UL‐94 (by the vertical burning test), and cone calorimeter test (CCT) characterizations. The prepared EVA/PGS@ZB‐N/EG composite obtained an LOI value of 41.2% with the addition of 30 wt% PGS@ZB‐N/EG. It was found that EVA/PGS@ZB‐N/EG was protected through a gas phase and condensed phase alternating synergistic effect mechanism.  相似文献   
72.
The qualitative properties of processed cheese (PC) fortified with different levels of asparagus powder (AP) (0.5%, 1% and 1.5% wt/wt) were evaluated during storage. AP decreased the pH and lipolysis indexes and increased the phenolic content, antioxidant activity and proteolysis of the processed cheeses. AP made the structure of the cheese more elastic, increased the rigidity and decreased the spreadability compared with the control sample, which corresponded to the results obtained using dynamic oscillatory rheometry. The results showed that AP as a rich source of bioactive components could be used for the fortification of processed cheeses.  相似文献   
73.
A series of random polyesteramides (PEAs) with a range of molar composition from 90/10 to 50/50 were synthesized by direct melt polycondensation of ε‐caprolactone and l ‐alanine. Their structure was fully characterized by Fourier transform IR and NMR spectroscopy. The resulting copolymers are completely amorphous with the exception of PEA‐90/10 which possesses a semicrystalline structure. These PEAs present increasing glass transition temperatures at increasing l ‐alanine contents and exhibit fairly good thermal stability with 10% mass loss temperatures reaching 315 °C. © 2020 Society of Industrial Chemistry  相似文献   
74.
75.
In this study, solvent‐free nanofibrous electrolytes were fabricated through an electrospinning method. Polyethylene oxide (PEO), lithium perchlorate and ethylene carbonate were used as polymer matrix, salt and plasticizer respectively in the electrolyte structures. Keggin‐type hetero polyoxometalate (Cu‐POM@Ru‐rGO, Ni‐POM@Ru‐rGO and Co‐POM@Ru‐rGO (POM, polyoxometalate; rGO, reduced graphene oxide)) nanoparticles were synthesized and inserted into the PEO‐based nanofibrous electrolytes. TEM and SEM analyses were carried out for further evaluation of the synthesized filler structures and the electrospun nanofibre morphologies. The fractions of free ions and crystalline phases of the as‐spun electrolytes were estimated by obtaining Fourier transform infrared and XRD spectra, respectively. The results showed a significant improvement in the ionic conductivity of the nanofibrous electrolytes by increasing filler concentrations. The highest ionic conductivity of 0.28 mS cm?1 was obtained by the introduction of 0.49 wt% Co‐POM@Ru‐rGO into the electrospun electrolyte at ambient temperature. Compared with solution‐cast polymeric electrolytes, the electrospun electrolytes present superior ionic conductivity. Moreover, the cycle stability of the as‐spun electrolytes was clearly improved by the addition of fillers. Furthermore, the mechanical strength was enhanced with the insertion of 0.07 wt% fillers to the electrospun electrolytes. The results implied that the prepared nanofibres are good candidates as solvent‐free electrolytes for lithium ion batteries. © 2020 Society of Chemical Industry  相似文献   
76.
This study assessed the collection efficiency (CE) of two popularly used sampling devices (BioSampler and Coriolis sampler) for fungal aerosols. Phosphate‐buffered saline (PBS) supplemented with or without surfactant (Tween‐20, Tween‐80, or Triton X‐100) and antifoam agent was prepared and used as collection liquids. The agar impactor (BioStage) was simultaneously operated with liquid‐based samplers to collect fungi from seven sites located at a university building, public library, and animal farming. Fungal concentrations determined by liquid samplers were divided by those by BioStage, and the ratio values represented CE. Results indicate that the CE of BioSampler was superior to that of Coriolis (P = 0.0001) and the PBS containing surfactant collected fungi better than that without surfactant (P < 0.0001), whereas antifoam agent showed no influence (P = 0.8). Moreover, fungal concentrations determined by BioSampler with surfactant‐added PBS were statistically indifferent from those by BioStage (P > 0.05) with a Spearman correlation coefficient of 0.81‐0.83 (P < 0.01). In addition to sampler and collection liquid, sampling location was also identified as a significant CE factor (P = 0.006), implying potential influences by fungal genera in the studied fields. Overall, BioSampler with surfactant‐supplemented PBS (eg, Triton X‐100) is recommended considering the great CE and compatibility with a variety of analytical assays.  相似文献   
77.
78.
Class I hydrophobin Vmh2, a peculiar surface active and versatile fungal protein, is known to self‐assemble into chemically stable amphiphilic films, to be able to change wettability of surfaces, and to strongly adsorb other proteins. Herein, a fast, highly homogeneous and efficient glass functionalization by spontaneous self‐assembling of Vmh2 at liquid–solid interfaces is achieved (in 2 min). The Vmh2‐coated glass slides are proven to immobilize not only proteins but also nanomaterials such as graphene oxide (GO) and quantum dots (QDs). As models, bovine serum albumin labeled with Alexa 555 fluorophore, anti‐immunoglobulin G antibodies, and cadmium telluride QDs are patterned in a microarray fashion in order to demonstrate functionality, reproducibility, and versatility of the proposed substrate. Additionally, a GO layer is effectively and homogeneously self‐assembled onto the studied functionalized surface. This approach offers a quick and simple alternative to immobilize nanomaterials and proteins, which is appealing for new bioanalytical and nanobioenabled applications.  相似文献   
79.
Doped CeGdO and codoped CeGdOSmO compositions were synthesized, giving rise to nanoparticulate powders. Ionic conductivities at bulk and grain boundaries of the sintered samples were determined, exhibiting increased conductivity in the samaria-codoped samples. Scanning electron microscopy (SEM) showed a significant reduction in the grain size of samaria-codoped electrolytes. This reduced grain size of the codoped samples caused a reduction in Schottky barrier height, increasing oxygen vacancy concentration in the space-charge layer of the grain boundary and culminating in greater ionic conductivity in the boundary region. For the gadolinium doped samples, high resolution transmission electron microscopy images at grains showed the presence of large cluster of defects (nanodomains), hindering the movement of charge carriers and reducing ionic conductivity. However, the samaria-codoped system displayed better homogeneity at atomic level, resulting in reduced oxygen vacancy ordering and, consequently, smaller nanodomains and higher bulk (grain) conductivity. The reduced grain sizes and smaller nanodomains caused by codoping favor the ionic conductivity of ceria-based ceramics, doped with gadolinia and codoped with samaria.  相似文献   
80.
A facile sol–gel procedure has been developed for the synthesis of colloidal alumina nanocrystals. For the first time, optical characterization procedures were employed to study the quantum confinement effects in optical properties of the prepared Al2O3 sol. Accordingly, the hyperbolic band model was used to determine the optical band gap of colloidal alumina nanocrystals. X‐Ray diffraction pattern was used to study the crystallographic phase of the dried gel. Morphological characterization was performed using scanning electron microscopy (SEM). Inductively Coupled Plasma (ICP) emission spectroscopy was used to determination purity of the Al2O3 powder. High‐resolution TEM showed that the diameter of colloidal nanocrystals is about 10 nm. Photoluminescence spectroscopy demonstrated that quantum yields for colloidal nanocrystals are 68% with 300 nm excitation wavelength. The experimental observations confirm that highly stable alumina sol with strong UV emission was synthesized. The mentioned optical properties have not been reported before.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号